Advertisement

Carotenoids pp 83-98 | Cite as

Microbial and Microalgal Carotenoids as Colourants and Supplements

  • Laurent Dufossé
Part of the Carotenoids book series (CAROT, volume 5)

Abstract

General aspects of the production and use of carotenoids as colourants and supplements were discussed in Chapter 4. For several decades, these carotenoids have been produced commercially by chemical synthesis or as plant extracts or oleoresins, e.g. of tomato and red pepper. Some unicellular green algae, under appropriate conditions, become red due to the accumulation of high concentrations of ‘secondary’ carotenoids. Two examples, Dunaliella spp. and Haematococcus pluvialis, are cultured extensively as sources of β-carotene (3) and (3S,3′S)-astaxanthin (406), respectively. Non-photosynthetic microorganisms, i.e. bacteria, yeasts and moulds, may also be strongly pigmented by carotenoids, so commercial production by these organisms is an attractive prospect. Penetration into the food industry by fermentation-derived ingredients is increasing year after year, examples being thickening or gelling agents (xanthan, curdlan, gellan), flavour enhancers (yeast hydrolysate, monosodium glutamate), flavour compounds (γ-decalactone, diacetyl, methyl ketones), and acidulants (lactic acid, citric acid). Fermentation processes for pigment production on a commercial scale were developed later but some are now in use in the food industry, such as production of β-carotene from the fungus Blakeslea trispora, in Europe, and the non-carotenoid heterocyclic pigments from Monascus, in Asia [1, 2, 3]. Efforts have been made to reduce the production costs so that pigments produced by fermentation can be competitive with synthetic pigments or with those extracted from natural sources. There is scope for innovations to improve the economics of carotenoid production by isolating new microorganisms, creating better ones, or improving the processes.

Keywords

Carotenoid Biosynthesis Carotenoid Production Monosodium Glutamate Astaxanthin Production Rhodotorula Glutinis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    U. Wissgott and K. Bortlik, Trends Food Sci. Technol., 7, 298 (1996).CrossRefGoogle Scholar
  2. [2]
    P. O’Carroll, The World of Ingredients, 3–4, 39 (1999).Google Scholar
  3. [3]
    A. Downham and P. Collins, Int. J. Food Set. Technol., 35, 5 (2000).CrossRefGoogle Scholar
  4. [4]
    M. Avron and A. Ben-Amotz, Dunaliella: Physiology, Biochemistry and Biotechnology, CRC Press, London (1992).Google Scholar
  5. [5]
    A. Ben-Amotz, A. Kartz and M. Avron, J. Phycol, 18, 529 (1983).CrossRefGoogle Scholar
  6. [6]
    Z. W. Ye, J. G. Jiang and G. H. Wu, Progr. Prosp. Biotechnol. Adv.,26, 352 (2008).CrossRefGoogle Scholar
  7. [7]
    R. Villar, M. R. Laguna, J. M. Callega and I. Cadavid, Planta Med., 58, 405 (1992).CrossRefGoogle Scholar
  8. [8]
    L. S. Jahnke, J. Photochem. Photobiol. B, 48, 68 (1999).CrossRefGoogle Scholar
  9. [9]
    L. E. Lampila, S. E. Wallen, L. B. Bullerman and S. R. Lowry, Lebensm. Wiss. Technol., 18, 366 (1985).Google Scholar
  10. [10]
    E. Papaioannou, T. Roukas and M. Liakopoulou-Kyriakides, Prep. Biochem. Biotechnol., 38, 246 (2008).CrossRefGoogle Scholar
  11. [11]
    European Commission, Opinion of the Scientific Committee on Food on β-Carotene fromBlakeslea trispora, SCF/CS/ADD/COL 158, adopted on 22 June 2000 and corrected on 7 September 2000.Google Scholar
  12. [12]
    E. A. Iturriaga, T. Papp, J. Breum, J. Arnau and A. P. Eslava, Meth. Biotechnol, 18, 239 (2005).Google Scholar
  13. [13]
    E. R. A. Almeida and E. Cerda-Olmedo, Curr. Genetics, 53, 129 (2008).CrossRefGoogle Scholar
  14. [14]
    F. J. Murillo, I. L. Calderon, I. Lopez-Diaz and E. Cerda-Olmedo, Appl. Env. Microbiol., 36, 639 (1978).Google Scholar
  15. [15]
    B. J. Mehta, L. M. Salgado, E. R. Bejarano and E. Cerda-Olmedo, Appl. Env. Microbiol., 63, 3657 (1997).Google Scholar
  16. [16]
    E. Cerda-Olmedo, FEMS Microbiol. Rev., 25, 503 (2001).CrossRefGoogle Scholar
  17. [17]
    E. Navarro, J. M. Lorca-Pascual, M. D. Quiles-Rosillo, F. E. Nicolas, V. Garre, S. Torres-Martinez and R. M. Ruiz-Vazquez, Mol. Genet. Genomics, 266, 463 (2001).CrossRefGoogle Scholar
  18. [18]
    A. Velayos, M. A. Lopez-Matas, M. J. Ruiz-Hidalgo and A. P. Eslava, Fungal Genet. Biol., 22, 19 (1997).CrossRefGoogle Scholar
  19. [19]
    EFSA, The EFSA Journal, 212, 1 (2005).Google Scholar
  20. [20]
    Vitatene Inc., Application for the. approval of lycopene from Blakeslea trispora, under the. EC regulation No 258/97 of the European Parliament, (2003).Google Scholar
  21. [21]
    J. D. Jones, T. M. Hohn and T. D. Leathers, Soc. Indust. Microbiol. Annual Meeting, p. 91 (2004).Google Scholar
  22. [22]
    T. D. Leathers, J. D. Jones and T. M. Holm, US Patent 6,696,282 (2004).Google Scholar
  23. [23]
    E. Del Rio, F. G. Acien, M. C. Garcia-Malea, J. Rivas, E. Molina-Grima and M. G. Guerrero, Biotechnol. Bioeng., 100, 397 (2008).CrossRefGoogle Scholar
  24. [24]
    J. Fabregas, A. Otero, A. Maseda and A. Dominguez, J. Biotechnol., 89, 65 (2001).CrossRefGoogle Scholar
  25. [25]
    M. A. Borowitzka, J. M. Huisman and A. Osborn, J. Appl. Phycol., 3, 295 (1991).Google Scholar
  26. [26]
    M. Kobayashi, T. Kakizono and S. Nagai, J. Ferrn. Bioeng., 71, 335 (1991).CrossRefGoogle Scholar
  27. [27]
    R. Sarada, T. Usha and G. A. Ravishankar, Process Biochem., 37, 623 (2002)CrossRefGoogle Scholar
  28. [28]
    T. R. Sommer, W. Pott and N. M. Morrissy, Aquaculture, 94, 79 (1991).CrossRefGoogle Scholar
  29. [29]
    K. Ukibe, T. Katsuragi, Y. Tani and H. Takagi, FEMS Microbiol. Letts., 286 241 (2008).CrossRefGoogle Scholar
  30. [30]
    G. H. An, B.G. Jang and M. H. Cho, J. Biosci. Bioeng., 92, 121 (2001).CrossRefGoogle Scholar
  31. [31]
    J. M. Cruz and J. C. Parajo, Food Chem., 63, 479 (1998).CrossRefGoogle Scholar
  32. [32]
    G. T. Hayman, B. M. Mannarelli and T. D. Leathers, J. Indust. Microbiol. Biotechnol, 14, 389 (1995).Google Scholar
  33. [33]
    J. D. Fontana, B. Czeczuga, T. M. B. Bonfim, M. B. Chociai, B. H. Oliveira, M. F. Guimaraes and M. Baron, Bioresource Technol., 58, 121 (1996).CrossRefGoogle Scholar
  34. [34]
    J. Ramirez, M. L. Nunez and R. Valdivia, J. Indust. Microbiol. Biotechnol, 24, 187 (2000).CrossRefGoogle Scholar
  35. [35]
    E. Longo, C. Sieiro, J. B. Velazquez, P. Calo, J. Cansado and T. G Villa, Biotech Forum Europe, 9, 565 (1992).Google Scholar
  36. [36]
    L. B. Flores-Cotera, R. Martin and S. Sanchez, Appl. Microbiol. Biotechnol, 55, 341 (2001).CrossRefGoogle Scholar
  37. [37]
    Z. Palágyi, L. Ferenczy and C. Vagvölgyi, World J. Microbiol. Biotechnol, 17, 95 (2001).CrossRefGoogle Scholar
  38. [38]
    J. Ramirez, H. Guttierez and A. Gschaedler, J. Biotechnol, 88, 259 (2001).CrossRefGoogle Scholar
  39. [39]
    Y. S. Liu, J. Y. Wu and K. P. Ho, Biochem. Eng. J., 27, 331 (2006).CrossRefGoogle Scholar
  40. [40]
    K. P. Ho, C. Y. Tam and B. Zhou, Biotechnol. Lett., 21, 175 (1999).CrossRefGoogle Scholar
  41. [41]
    H. Y. Chan and K. P. Ho, Biotechnol. Lett., 21, 953 (1999).CrossRefGoogle Scholar
  42. [42]
    L. Rubinstein, A. Altamirano, L. D. Santopietro, M. Baigori and L. I. C. D. Figueroa, Folia Microbiol., 43, 626 (1998).CrossRefGoogle Scholar
  43. [43]
    J. C. Verdoes, G. Sandmann, H. Visser, M. Diaz, M. van Mossel and A. J. J. van Ooyen, Appl. Env. Microbiol., 69, 3728 (2003).CrossRefGoogle Scholar
  44. [44]
    T. J. Fang and J. M. Wang, Process Biochem., 37, 1235 (2002).CrossRefGoogle Scholar
  45. [45]
    M. Vazquez, Food Technol. Biotechnol, 39, 123 (2001).Google Scholar
  46. [46]
    E. A. Johnson, Int. Microbiol, 6, 169 (2003).CrossRefGoogle Scholar
  47. [47]
    P. R. David, US Patent 7,309,602 (2007).Google Scholar
  48. [48]
    A. Yokoyama, H. Izumida and W. Miki, Biosci. Biotech. Biochem., 58, 1842 (1994).CrossRefGoogle Scholar
  49. [49]
    A. Yokoyama and W. Miki, FEMS Microbiol. Lett., 128, 139 (1995).CrossRefGoogle Scholar
  50. [50]
    A. Yokoyama, K. Adachi and Y. Shizuri, J. Nat. Prod., 58, 1929 (1995).CrossRefGoogle Scholar
  51. [51]
    A. Tsubokura, H. Yoneda and H. Mizuta, Int. J. Syst. Bacteriol, 49, 277 (1999).CrossRefGoogle Scholar
  52. [52]
    P. Calo, T. D. Miguel, C. Sieiro, J. B. Velazquez and T. G. Villa, J. Appl. Bacteriol., 79, 282 (1995).Google Scholar
  53. [53]
    S. Alcantara and S. Sanchez, J. Ind. Microbiol. Biotechnol., 23, 697 (1999).CrossRefGoogle Scholar
  54. [54]
    D. Shepherd, J. Dasek, M. Suzanne and C. Carels, US Patent 3,951,743 (1976).Google Scholar
  55. [55]
    P. Bhosale and P. S. Bernstein, J. Indust. Microbiol. Biotechnol., 31, 565 (2004).CrossRefGoogle Scholar
  56. [56]
    P. Bhosale, A. J. Larson and P. S. Bernstein, J. Appl. Microbiol., 96, 623 (2004).CrossRefGoogle Scholar
  57. [57]
    P. Bhosale, I. V. Ermakov, M. R. Ermakova, W. Gellermann and P. S. Bernstein, Biotech. Lett., 25, 1007 (2003).CrossRefGoogle Scholar
  58. [58]
    M. V. Jagannadham, M. K. Chattopadhyay, C. Subbalakshmi, M. Vairamani, K. Narayanan, C. M. Rao and S. Shivaji, Arch. Microbiol, 173, 418 (2000).CrossRefGoogle Scholar
  59. [59]
    S. Rosa-Putra, A. Hemmerlin, J. Epperson, T. J. Bach, L. H. Guerra and M. Rohmer, FEMS Microbiol. Lett., 204, 347 (2001).CrossRefGoogle Scholar
  60. [60]
    D. L. Gierhart, US Patent 5,308,759 (1994).Google Scholar
  61. [61]
    A. Berry, D. Janssens, M. Hümbelin, J. P. M. Jore, B. Hoste, I. Cleenwerck, M. Vancanneyt, W. Bretzel, A. F. Mayer, R. Lopez-Ulibarri, B. Shanmugam, J. Swings and L. Pasamontes, Int. J. Syst. Evol Microbiol, 53, 231 (2003).CrossRefGoogle Scholar
  62. [62]
    M. Hümbelin, A. Thomas, J. Lin, J. Jore and A. Berry, Gene, 297, 129 (2002).CrossRefGoogle Scholar
  63. [63]
    A. J. Schocher and O. Wiss, US Patent 3,891,504, (1975).Google Scholar
  64. [64]
    A. Berry, W. Bretzel, M. Hümbelin, R. Lopez-Ulibarri, A. F. Mayer and A. A. Yeliseev, US Patent 0266518 (2005).Google Scholar
  65. [65]
    A. Berry, W. Bretzel, M. Hümbelin, R. Lopez-Ulibarri, A. F. Mayer and A. Yeliseev, World Patent WO 2002099095 (2002).Google Scholar
  66. [66]
    G. Raguenes, X. Moppert, L. Richert, J. Ratiskol, C. Payri, B. Costa and J. Guezennec, Curr. Microbiol., 49, 145 (2004).CrossRefGoogle Scholar
  67. [67]
    D. Asker, T. Beppu and K. Ueda, Int. J. Syst. Evol. Micriobiol, 58, 601 (2008).CrossRefGoogle Scholar
  68. [68]
    J. Lorquin, F. Molouba and B. L. Dreyfus, Appl. Environ. Microbiol., 63, 1151 (1997).Google Scholar
  69. [69]
    L. Hannibal, J. Lorquin, N. A. D’Ortoli, N. Garcia, C. Chaintreuil, C. Masson-Boivin, B. Dreyfus and E. Giraud, J. Bacteriol, 182, 3850 (2000).CrossRefGoogle Scholar
  70. [70]
    D. Asker and Y. Ohta, J. Biosci. Bioeng., 88, 617 (1999).CrossRefGoogle Scholar
  71. [71]
    D. Asker and Y. Ohta, Int. J. Syst. Evol. Microbiol., 52, 729 (2002).CrossRefGoogle Scholar
  72. [72]
    D. Asker and Y. Ohta, Appl. Microbiol. Biotechnol., 58, 743 (2002).CrossRefGoogle Scholar
  73. [73]
    T. de Miguel, C. Sieiro, M. Poza and T. G. Villa, Int. Microbiol., 3, 107 (2000).Google Scholar
  74. [74]
    T. de Miguel, C. Sieiro, M. Poza and T. G. Villa, J. Agric. Food Chem., 49, 1200 (2001).CrossRefGoogle Scholar
  75. [75]
    P. Veiga-Crespo, L. Blasco, F.R. dos Santos, M. Poza and T. G. Villa, Int. Microbiol, 8, 55 (2005).Google Scholar
  76. [76]
    S. L. Wang, D. J. Chen, B. W. Deng and X. Z. Wu, Yeast, 25, 251 (2008).CrossRefGoogle Scholar
  77. [77]
    E. D. Simova, G. I. Frengova and D. M. Beshkova, J. Indust. Microbiol. Biotechnol., 31, 115 (2004).CrossRefGoogle Scholar
  78. [78]
    P. Buzzini, A. Martini, M. Gaetani, B. Turchetti, U. M. Pagnoni and P. Davoli, Enzyme Microb. Technol., 36, 687 (2005).CrossRefGoogle Scholar
  79. [79]
    H. Sakaki, T. Nakanishi, K.Y. Satonaka, W. Miki, T. Fujita and S. Komemushi, J. Biosci. Bioeng., 89, 203 (2000).CrossRefGoogle Scholar
  80. [80]
    J. Tinoi, N. Rakariyatham and R. L. Deming, Process Biochem., 40, 2551 (2005).CrossRefGoogle Scholar
  81. [81]
    N. Misawa and H. Shimada, J. Biotechnol., 59, 169 (1998).CrossRefGoogle Scholar
  82. [82]
    M. J. Kang, Y. M. Lee, S. H. Yoon, J. H. Kim, S. W. Ock, K. H. Jung, Y. C. Shin, J. D. Keasling and S. W. Kim, Biotechnol. Bioeng., 91, 636 (2005).CrossRefGoogle Scholar
  83. [83]
    A. Das, S. H. Yoon, S. H. Lee, J. Y. Kim, D. K. Oh and S. W. Kim, Appl. Microbiol. Biotechnol, 77, 505 (2007).CrossRefGoogle Scholar
  84. [84]
    W. R. Farmer and J. C. Liao, Biotechnol. Prog., 17, 57 (2001).CrossRefGoogle Scholar
  85. [85]
    G. Sandmann, M. Albrecht, G. Schnurr, O. Knörzer and P. Böger, TIBTECH, 17, 233 (1999).Google Scholar
  86. [86]
    Y. Miura, K. Kondo, T. Saito, H. Shimada, P. D. Fraser and N. Misawa, Appl. Env. Microbiol., 64, 1226, (1998).Google Scholar
  87. [87]
    S. Yamano, T. Ishii, M. Nakagawa, H. Ikenaga and N. Misawa, Biosci. Biotechnol. Biochem., 58, 1112 (1994).CrossRefGoogle Scholar
  88. [88]
    C. Wang, M. K. Oh and J. C. Liao, Biotechnol. Prog., 16, 922 (2000).CrossRefGoogle Scholar
  89. [89]
    D. Umeno and F. H. Arnold, J. Bacteriol., 186, 1531 (2004).CrossRefGoogle Scholar
  90. [90]
    D. Umeno and F. H. Arnold, Appl. Environ. Microbiol., 69, 3573 (2003).CrossRefGoogle Scholar
  91. [91]
    G. Sandmann, ChemBioChem, 3, 629 (2002).CrossRefGoogle Scholar
  92. [92]
    C. Schmidt-Dannert, Curr. Opin. Biotechnol., 11, 255 (2000).CrossRefGoogle Scholar
  93. [93]
    M. Albrecht, S. Takaichi, S. Steiger, Z. Y. Wang and G. Sandmann, Nature Biotechnol., 18, 843 (2000).CrossRefGoogle Scholar
  94. [94]
    J. M. Jez and J. P. Noel, Nature Biotechnol., 18, 825 (2000).CrossRefGoogle Scholar
  95. [95]
    H. Ernst, Pure Appl. Chem., 74, 1369 (2002).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 2009

Authors and Affiliations

  • Laurent Dufossé
    • 1
  1. 1.ESIDAI LCSNSA Parc TechnologiqueUniversité de la RéunionLa RéunionFrance

Personalised recommendations