Advertisement

Carotenoids pp 383-408 | Cite as

Biological Activities of Carotenoid Metabolites

  • Xiang-Dong Wang
Part of the Carotenoids book series (CAROT, volume 5)

Abstract

Considerable research effort has been expended in an attempt to substantiate and understand the potential roles of carotenoids in human health and disease, as described in previous Chapters in this Volume. Early studies dealt with β-carotene (3) and other provitamin A carotenoids, but more recent research efforts have focused on the potential roles in health and disease of the non-provitamin A carotenoids, such as lycopene (31) and lutein (133). Carotenoids are lipophilic and the series of conjugated double bonds in the central chain of the molecule makes them susceptible to oxidative cleavage [1], to isomerization between the trans (E) and cis (Z) forms [2], and to the formation of potentially bioactive metabolites [3]. The best known metabolite of carotenoids is vitamin A, as retinal (1), retinol (2) and retinoic acid (3). In recent years, considerable efforts have been made to identify biological properties of carotenoid metabolites other than vitamin A and related retinoids. Better understanding of the molecular details behind the actions of these carotenoid oxidative metabolites may yield insights into both physiological and pathophysiological processes in human health and disease. For provitamin A carotenoids, such as β-carotene, α-carotene (7), and β-cryptoxanthin (55), central cleavage is a major pathway leading to vitamin A and its derivatives [4,5] (see Chapter 8 and Volume 4, Chapter 16). This pathway has been substantiated by the cloning of a central cleavage enzyme, β-carotene 15,15′-oxygenase (BCO1), which can cleave carotenoids at their C(15,15′) double bond. It has been well demonstrated that retinoids, the most important oxidative products of provitamin A carotenoids, play an essential role in many critical biological processes, including vision, reproduction, metabolism, differentiation, haematopoiesis, bone development, and pattern formation during embryogenesis [6].

Keywords

Retinoic Acid Retinoic Acid Receptor Human Bronchial Epithelial Cell Line Retinoic Acid Response Element Retinoic Acid Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Khachik, in Carotenoids and Retinoids. Molecular Aspects and Health Issues (ed. L. Packer, K. Kraemer, U. Obermüller-Jevic and H. Sies), p. 61, AOCS Press, Champaign, Illinois (2005).Google Scholar
  2. [2]
    A. C. Boileau and J. W. Erdman Jr., in Carotenoids in Health and Disease (ed. N. I. Krinsky, S. T. Mayne and H. Sies), p. 209, Marcel Dekker, New York, NY (2004).Google Scholar
  3. [3]
    X. D. Wang, in Carotenoids in Health and Disease (ed. N. I. Krinsky, S. T. Mayne and H. Sies), p. 313, Marcel Dekker, New York, NY (2004).Google Scholar
  4. [4]
    X. D. Wang and N. I. Krinsky, Subcell. Biochem., 30, 159 (1998).Google Scholar
  5. [5]
    H. Merintz and X.-D. Wang, in Vitamin A: New Research (ed. I. T. Loessing), p. 39, Nova Science Publisher, Columbia (2007).Google Scholar
  6. [6]
    P. Chambon, FASEB J., 10, 940 (1996).Google Scholar
  7. [7]
    L. Altucci and H. Gronemeyer, Nat. Rev. Cancer, 1, 181 (2001).Google Scholar
  8. [8]
    A. L. Fields, D. R. Soprano and K. J. Soprano, J. Cell. Biochem., 102, 886 (2007).Google Scholar
  9. [9]
    G. Duester, Cell, 134, 921 (2008).Google Scholar
  10. [10]
    Y. Sharoni, M. Danilenko and J. Levy, in Carotenoids in Health and Disease (ed. N. I. Krinsky, S. T. Mayne and H. Sies), p. 165, Marcel Dekker, New York, NY (2004).Google Scholar
  11. [11]
    Y. Sharoni, M. Danilenko, N. Dubi, A. Ben-Dor and J. Levy, Arch. Biochem. Biophys., 430, 89, (2004).Google Scholar
  12. [12]
    D. S. Goodman and H. S. Huang, Science, 149, 879 (1965).Google Scholar
  13. [13]
    J. A. Olson and O. Hayaishi, Proc. Natl. Acad. Sci. USA, 54, 1364 (1965).Google Scholar
  14. [14]
    J. von Lintig and K. Vogt, J. Biol. Chem., 275, 11915 (2000).Google Scholar
  15. [15]
    A. Wyss, G. Wirtz, W. Woggon, R. Brugger, M. Wyss, A. Friedlein, H. Bachmann and W. Hunziker, Biochem. Biophys. Res. Commun., 271, 334 (2000).Google Scholar
  16. [16]
    M. G. Leuenberger, C. Engeloch-Jarret and W. D. Woggon, Angew. Chem. Int. Ed. Engl., 40, 2613 (2001).Google Scholar
  17. [17]
    T. M. Redmond, S. Gentleman, T. Duncan, S. Yu, B. Wiggert, E. Gantt and F. X. Cunningham Jr., J. Biol. Chem., 276, 6560 (2001).Google Scholar
  18. [18]
    A. Lindqvist and S. Andersson, J. Biol. Chem., 277, 23942 (2002).Google Scholar
  19. [19]
    W. Yan, G. F. Jang, F. Haeseleer, N. Esumi, J. Chang, M. Kerrigan, M. Campochiaro, P. Campochiaro, K. Palczewski and D. J. Zack, Genomics, 72, 193 (2001).Google Scholar
  20. [20]
    A. Nagao and J. A. Olson, FASEB J., 8, 968 (1994).Google Scholar
  21. [21]
    E. Poliakov, S. Gentleman, F. X. Cunningham Jr., N. J. Miller-Ihli and T. M. Redmond, J. Biol. Chem., 280, 29217 (2005).Google Scholar
  22. [22]
    K. Q. Hu, C. Liu, H. Ernst, N.I. Krinsky, R. M. Russell and X. D. Wang, J. Biol. Chem., 281, 19327 (2006).Google Scholar
  23. [23]
    A. C. Boileau, N. R. Merchen, K. Wasson, C. A. Atkinson and J. W. Erdman Jr., J. Nutr., 129, 1176 (1999).Google Scholar
  24. [24]
    C. Liu, F. Lian, D. E. Smith, R. M. Russell and X. D. Wang, Cancer Res., 63, 3138 (2003).Google Scholar
  25. [25]
    C. Liu, R. M. Russell and X. D. Wang, J. Nutr., 136, 106 (2006).Google Scholar
  26. [26]
    K. Wu, S. J. Schwartz, E. A. Platz, S. K. Clinton, J. W. Erdman Jr., M. G. Ferruzzi, W. C. Willett and E. L. Giovannucci, J. Nutr., 133, 1930 (2003).Google Scholar
  27. [27]
    J. Glover, Vitam. Horm., 18, 371 (1960).Google Scholar
  28. [28]
    R. V. Sharma, S. N. Mathur and J. Ganguly, Biochem. J, 158, 377 (1976).Google Scholar
  29. [29]
    R. V. Sharma, S. N. Mathur, A. A. Dmitrovskii, R. C. Das and J. Ganguly, Biochim. Biophys. Acta, 486, 183 (1976).Google Scholar
  30. [30]
    J. Ganguly and P. S. Sastry, World Rev. Nutr. Diet., 45, 199 (1985).Google Scholar
  31. [31]
    G. Wolf, Nutr. Rev., 53, 134 (1995).Google Scholar
  32. [32]
    X. D. Wang, G. W. Tang, J. G. Fox, N. I. Krinsky and R. M. Russell, Arch. Biochem. Biophys., 285, 8 (1991).Google Scholar
  33. [33]
    G. W. Tang, X. D. Wang, R. M. Russell and N. I. Krinsky, Biochemistry, 30, 9829 (1991).Google Scholar
  34. [34]
    X. D. Wang, N. I. Krinsky, G. W. Tang and R. M. Russell, Arch. Biochem. Biophys., 293, 298 (1992).Google Scholar
  35. [35]
    X. D. Wang, R. M. Russell, C. Liu, F. Stickel, D. E. Smith and N. I. Krinsky, J. Biol. Chem., 271, 26490 (1996).Google Scholar
  36. [36]
    C. Kiefer, S. Hessel, J. M. Lampert, K. Vogt, M. O. Lederer, D. E. Breithaupt and J. von Lintig, J. Biol. Chem., 276, 14110 (2001).Google Scholar
  37. [37]
    M. R. Lakshmanan, J. L. Pope and J. A. Olson, Biochem. Biophys. Res. Commun., 33, 347 (1968).Google Scholar
  38. [38]
    C. Liu, X. D. Wang and R. M. Russell, J. Nutr. Biochem., 8, 652 (1997).Google Scholar
  39. [39]
    X. D. Wang, N. I. Krinsky, R. P. Marini, G. Tang, J. Yu, R. Hurley, J. G. Fox and R. M. Russell. Am. J. Physiol., 263, G480 (1992).Google Scholar
  40. [40]
    X. D. Wang, J. Nutr., 135, 2053S (2005).Google Scholar
  41. [41]
    A. Lindqvist, Y. G. He and S. Andersson, J. Histochem. Cytochem., 53, 1403 (2005).Google Scholar
  42. [42]
    C. C. Ho, F. F. de Moura, S. H. Kim and A. J. Clifford, Am. J. Clin. Nutr., 85, 770 (2007).Google Scholar
  43. [43]
    X. D. Wang, R. P. Marini, X. Hebuterne, J. G. Fox, N. I. Krinsky and R. M. Russell, Gastroenterology, 108, 719 (1995).Google Scholar
  44. [44]
    X. Hebuterne, X. D. Wang, D. E. Smith, G. Tang and R. M. Russell, J. Lipid Res., 37, 482 (1996).Google Scholar
  45. [45]
    M. Gajic, S. Zaripheh, F. Sun and J. W. Erdman Jr., J. Nutr., 136, 1552 (2006).Google Scholar
  46. [46]
    J. L. Napoli and K. R. Race, J. Biol. Chem., 263, 17372 (1988).Google Scholar
  47. [47]
    X. D. Wang, N. I. Krinsky, P. N. Benotti and R. M. Russell, Arch. Biochem. Biophys., 313, 150 (1994).Google Scholar
  48. [48]
    J. Brabender, R. Metzger, D. Salonga, K. D. Danenberg, P. V. Danenberg, A. H. Holscher and P. M. Schneider, Carcinogenesis, 26, 525 (2005).Google Scholar
  49. [49]
    S. M. Lippman and R. Lotan, J. Nutr., 130, 479S (2000).Google Scholar
  50. [50]
    X. C. Xu, J. J. Lee, T. T. Wu, A. Hoque, J. A. Ajani and S. M. Lippman, Cancer Epidemiol. Biomarkers Prev., 14, 826 (2005).Google Scholar
  51. [51]
    B. Houle, C. Rochette-Egly and W. E. Bradley, Proc. Natl. Acad. Sci. USA, 90, 985 (1993).Google Scholar
  52. [52]
    S. Song and X. C. Xu, Biochem. Biophys. Res. Commun., 281, 872 (2001).Google Scholar
  53. [53]
    G. Q. Chen, B. Lin, M. I. Dawson and X. K. Zhang, Int. J. Cancer, 99, 171 (2002).Google Scholar
  54. [54]
    J. M. Kurie, R. Lotan, J. J. Lee, J. S. Lee, R. C. Morice, D. D. Liu, X. C. Xu, F. R. Khuri, J. Y. Ro, W. N. Hittelman, G. L. Walsh, J. A. Roth, J. D. Minna and W. K. Hong, J. Natl. Cancer Inst., 95, 206 (2003).Google Scholar
  55. [55]
    H. Mernitz, D. E. Smith, A. X. Zhu and X. D. Wang, CancerLett., 101 (2006).Google Scholar
  56. [56]
    R. M. Ponnamperuma, Y. Shimizu, S. M. Kirchhof and L. M. De Luca, Nutr. Cancer, 37, 82 (2000).Google Scholar
  57. [57]
    P. Prakash, C. Liu, K. Q. Hu, N. I. Krinsky, R. M. Russell and X. D. Wang, J. Nutr., 134, 667 (2004).Google Scholar
  58. [58]
    O. Ziouzenkova and J. Plutzky, FEBS Lett., 582, 32 (2008).Google Scholar
  59. [59]
    O. Ziouzenkova, G. Orasanu, G. Sukhova, E. Lau, J. P. Berger, G. Tang, N. I. Krinsky, G. G. Dolnikowski and J. Plutzky, Mol. Endocrinol., 21, 77 (2007).Google Scholar
  60. [60]
    C. Liu, X. D. Wang, R. T. Bronson, D. E. Smith, N. I. Krinsky and R. M. Russell, Carcinogenesis, 21, 2245 (2000).Google Scholar
  61. [61]
    X. D. Wang, C. Liu, R. T. Bronson, D. E. Smith, N. I. Krinsky and R. M. Russell, J. Natl. Cancer Inst., 91, 60 (1999).Google Scholar
  62. [62]
    X. D. Wang and R. M. Russell, Nutr. Rev., 57, 263 (1999).Google Scholar
  63. [63]
    M. G. Salgo, R. Cueto, G. W. Winston and W. A. Pryor, Free Radic. Biol. Med., 26, 162 (1999).Google Scholar
  64. [64]
    M. Paolini, A. Antelli, L. Pozzetti, D. Spetlova, P. Perocco, L. Valgimigli, G. F. Pedulli and G. Cantelli-Forti, Carcinogenesis, 22, 1483 (2001).Google Scholar
  65. [65]
    P. Perocco, M. Paolini, M. Mazzullo, G. L. Biagi and G. Cantelli-Forti, Mutation Res., 440, 83 (1999).Google Scholar
  66. [66]
    S. L. Yeh and M. L. Hu, Food Chem. Toxicol., 41, 1677 (2003).Google Scholar
  67. [67]
    W. Siems, I. Wiswedel, C. Salerno, C. Crifo, W. Augustin, L. Schild, C. D. Langhans and O. Sommerburg, J. Nutr, Biochem., 16, 385 (2005).Google Scholar
  68. [68]
    C. Liu, R. M. Russell and X. D. Wang, J. Nutr., 133, 173 (2003).Google Scholar
  69. [69]
    E. C. Tibaduiza, J. C. Fleet, R. M. Russell and N. I. Krinsky, J. Nutr., 132, 1368 (2002).Google Scholar
  70. [70]
    J. Chung, C. Liu, D. E. Smith, H. K. Seitz, R. M. Russell and X. D. Wang, Carcinogenesis, 22, 1213 (2001).Google Scholar
  71. [71]
    C. Liu, R. M. Russell, H. K. Seitz and X. D. Wang, Gastroenterology, 120, 179 (2001).Google Scholar
  72. [72]
    X. D. Wang, C. Liu, R. T. Bronson, D. E. Smith, N. I. Krinsky and R. M. Russell, J. Natl. Cancer Inst., 91, 60 (1999).Google Scholar
  73. [73]
    Y. Kim, N. Chongviriyaphan, C. Liu, R. M. Russell and X. D. Wang, Carcinogenesis, 27, 1410 (2006).Google Scholar
  74. [74]
    C. Liu, R. M. Russell and X. D. Wang, J. Nutr., 134, 426 (2004).Google Scholar
  75. [75]
    F. Lian, K. Q. Hu, R. M. Russell and X. D. Wang, Int. J. Cancer, 119, 2084 (2006).Google Scholar
  76. [76]
    A. Matsumoto, H. Mizukami, S. Mizuno, K. Umegaki, J. Nishikawa, K. Shudo, H. Kagechika and M. Inoue, Biochem. Pharmacol, 74, 256 (2007).Google Scholar
  77. [77]
    A. Ben-Dor, A. Nahum, M. Danilenko, Y. Giat, W. Stahl, H. D. Martin, T. Emmerich, N. Noy, J. Levy and Y. Sharoni, Arch. Biochem. Biophys., 391, 295 (2001).Google Scholar
  78. [78]
    W. Stahl, J. von Laar, H. D. Martin, T. Emmerich and H. Sies, Arch. Biochem. Biophys., 373, 271 (2000).Google Scholar
  79. [79]
    H. Araki, Y. Shidoji, Y. Yamada, H. Moriwaki and Y. Muto, Biochem. Biophys. Res. Commun., 209, 66 (1995).Google Scholar
  80. [80]
    Y. Muto, H. Moriwaki and M. Omori, Gann, 72, 974 (1981).Google Scholar
  81. [81]
    M. Suzui, M. Masuda, J. T. Lim, C. Albanese, R. G. Pestell and I. B. Weinstein, Cancer Res., 62, 3997 (2002).Google Scholar
  82. [82]
    Y. Muto, H. Moriwaki, M. Ninomiya, S. Adachi, A. Saito, K. T. Takasaki, T. Tanaka, K. Tsurumi, M. Okuno, E. Tomita, T. Nakamura and T. Kojima, New Engl. J. Med., 334, 1561 (1996).Google Scholar
  83. [83]
    F. Lian, D. E. Smith, H. Ernst, R. M. Russell and X. D. Wang, Carcinogenesis, 28, 1567 (2007).Google Scholar
  84. [84]
    T. Suzuki, M. Matsui and A. Murayama, J. Nutr. Sci. Vitaminol., 41, 575 (1995).Google Scholar
  85. [85]
    J. Y. Winum, M. Kamal, H. Defacque, T. Commes, C. Chavis, M. Lucas, J. Marti and J. L. Montero, Farmaco, 52, 39 (1997)Google Scholar
  86. [86]
    E. Nara, H. Hayashi, M. Kotake, K. Miyashita and A. Nagao, Nutr. Cancer, 39, 273 (2001).Google Scholar
  87. [87]
    E. Kotake-Nara, S. J. Kim, M. Kobori, K. Miyashita and A. Nagao, Anticancer Res., 22, 689 (2002).Google Scholar
  88. [88]
    O. Aust, N. Ale-Agha, L. Zhang, H. Wollersen, H. Sies and W. Stahl, FoodChem. Toxicol., 41, 1399 (2003).Google Scholar
  89. [89]
    A. L. Vine, Y. M. Leung and J. S. Bertram, Mol. Carcinogenesis, 43, 75 (2005).Google Scholar
  90. [90]
    H. Zhang, E. Kotake-Nara, H. Ono and A. Nagao, Free Radic. Biol. Med., 35, 1653 (2003).Google Scholar
  91. [91]
    H. Mernitz, D. E. Smith, R. J. Wood, R. M. Russell and X. D. Wang, Int. J. Cancer, 120, 1402 (2007).Google Scholar
  92. [92]
    A. Ben-Dor, M. Steiner, L. Gheber, M. Danilenko, N. Dubi, K. Linnewiel, A. Zick, Y. Sharoni and J. Levy, Mol. Cancer Ther., 4, 177 (2005).Google Scholar
  93. [93]
    P. Talalay, Biofactors, 12, 5 (2000).Google Scholar
  94. [94]
    P. Talalay, A. T. Dinkova-Kostova and W. D. Holtzclaw, Adv. Enzyme Regul., 43, 121 (2003).Google Scholar
  95. [95]
    A. Giudice and M. Montella, Bioessays, 28, 169 (2006).Google Scholar
  96. [96]
    M. Ramos-Gomez, M. K. Kwak, P. M. Dolan, K. Itoh, M. Yamamoto, P. Talalay and T. W. Kensler, Proc. Natl. Acad. Sci. USA, 98, 3410 (2001).Google Scholar
  97. [97]
    X. Gao and P. Talalay, Proc. Natl. Acad. Sci. USA, 101, 10446 (2004).Google Scholar
  98. [98]
    E. Balogun, M. Hoque, P. Gong, E. Killeen, C. J. Green, R. Foresti, J. Alam and R. Motterlini, Biochem. J., 371, 887 (2003).Google Scholar
  99. [99]
    G. Shen, C. Xu, R. Hu, M. R. Jain, S. Nair, W. Lin, C. S. Yang, J. Y. Chan and A. N. Kong, Pharm. Res., 22, 1805 (2005).Google Scholar
  100. [100]
    S. Gradelet, P. Astorg, J. Leclerc, J. Chevalier, M. F. Vernevaut and M. H. Siess, Xenobiotica, 26, 49 (1996).Google Scholar
  101. [101]
    V. Breinholt, S. T. Lauridsen, B. Daneshvar and J. Jakobsen, Cancer Lett., 154, 201 (2000).Google Scholar
  102. [102]
    V. Bhuvaneswari, B. Velmurugan, S. Balasenthil, C. R. Ramachandran and S. Nagini, Fitoterapia, 72, 865 (2001).Google Scholar
  103. [103]
    F. Lian and X. D. Wang, Int. J. Cancer, 123, 1262 (2008).Google Scholar
  104. [104]
    R. J. Davis, Cell, 103, 239 (2000).Google Scholar
  105. [105]
    M. Karin, Z. Liu and E. Zandi, Curr. Opin. Cell Biol., 9, 240 (1997).Google Scholar
  106. [106]
    P. Gupta and R. Prywes, J. Biol. Chem., 277, 50550 (2002).Google Scholar
  107. [107]
    Y. Liu, M. Gorospe, C. Yang and N. J. Holbrook, J. Biol. Chem., 210, 8377 (1995).Google Scholar
  108. [108]
    D. N. Slack, O. M. Seternes, M. Gabrielsen and S. M. Keyse, J. Biol. Chem., 216, 16491 (2001).Google Scholar
  109. [109]
    C. Liu, R. M. Russell and X. D. Wang, J. Nutr., 134, 2705 (2004).Google Scholar
  110. [110]
    D. D. Hirsch and P. J. Stork, J. Biol. Chem., 272, 4568 (1997).Google Scholar
  111. [111]
    F. Furukawa, A. Nishikawa, K. Kasahara, I. S. Lee, K. Wakabayashi, M. Takahashi and M. Hirose, Jpn. J. Cancer Res., 90, 154 (1999).Google Scholar
  112. [112]
    J. Chung, P. R. Chavez, R. M. Russell and X. D. Wang, Oncogene, 21, 1539 (2002).Google Scholar
  113. [113]
    Y. Kim, F. Lian, K. J. Yeum, N. Chongviriyaphan, S. W. Choi, R. M. Russell and X. D. Wang, Int. J. Cancer, 120, 1847 (2007).Google Scholar
  114. [114]
    G. Y. Kim, J. H. Kim, S. C. Ahn, H. J. Lee, D. O. Moon, C. M. Lee and Y. M. Park, Immunology, 113, 203 (2004).Google Scholar
  115. [115]
    K. Q. Hu, Y. Wang, R. M. Russell and X. D. Wang, Carotenoid Sci., 12, 180 (2008).Google Scholar
  116. [116]
    H. Srinivas, D. M. Juroske, S. Kalyankrishna, D. D. Cody, R. E. Price, X. C. Xu, R. Narayanan, N. L. Weigel and J. M. Kurie, Mol. Cell Biol., 25, 1054 (2005).Google Scholar
  117. [117]
    N. Inui, S. Sasaki, T. Suda, K. Chida and H. Nakamura, Respirology, 8, 302 (2003).Google Scholar
  118. [118]
    M. Karas, H. Amir, D. Fishman, M. Danilenko, S. Segal, A. Nahum, A. Koifmann, Y. Giat, J. Levy and Y. Sharoni, Nutr. Cancer, 36, 101 (2000).Google Scholar
  119. [119]
    J. Levy, E. Bosin, B. Feldman, Y. Giat, A. Miinster, M. Danilenko and Y. Sharoni, Nutr. Cancer, 24, 257 (1995).Google Scholar
  120. [120]
    H. Yu and T. Rohan, J. Nati. Cancer Inst., 92, 1472 (2000).Google Scholar
  121. [121]
    D. R. Clemmons, W. H. Busby, T. Arai, T. J. Nam, J. B. Clarke, J. I. Jones and D. K. Ankrapp, Prog. Growth F actor Res., 6, 357 (1995).Google Scholar
  122. [122]
    L. Jerome, L. Shiry and B. Leyland-Jones, Endocr. Relat. Cancer, 10, 561 (2003).Google Scholar
  123. [123]
    J. M. Chan, M. J. Stampfer, E. Giovannucci, P. H. Gann, J. M a, P. Wilkinson, C. H. Hennekens and M. Pollak, Science, 219, 563 (1998).Google Scholar
  124. [124]
    S. E. Hankinson, W. C. Willett, G. A. Colditz, D. J. Hunter, D. S. Michaud, B. Deroo, B. Rosner, F. E. Speizer and M. Pollak, Lancet, 351, 1393 (1998).Google Scholar
  125. [125]
    J. Ma, M. N. Pollak, E. Giovannucci, J. M. Chan, T. Tao, C. H. Hennekens and M. J. Stampfer, J. Natl. Cancer Inst., 91, 620 (1999).Google Scholar
  126. [126]
    E. Giovannucci, J. Natl. Cancer Inst., 91, 317 (1999).Google Scholar
  127. [127]
    L. Arab, S. Steck-Scott and P. Bowen, Epidemiol. Rev., 23, 211 (2001).Google Scholar
  128. [128]
    S. K. Clinton, C. Emenhiser, S. J. Schwartz, D. G. Bostwick, A. W. Williams, B. J. Moore and J. W. Erdman Jr., Cancer Epidemiol. Biomarkers Prev., 5, 823 (1996).Google Scholar
  129. [129]
    E. Giovannucci, Exp. Biol. Med., 227, 852 (2002).Google Scholar
  130. [130]
    A. Nahum, L. Zeller, M. Danilenko, O. W. Prall, C. K. Watts, R. L. Sutherland, J. Levy and Y. Sharoni, Eur. J. Nutr., 45, 275 (2006).Google Scholar
  131. [131]
    M. Karas, M. Danilenko, D. Fishman, D. LeRoith, J. Levy and Y. Sharoni, J. Biol. Chem., 272, 16514 (1997).Google Scholar
  132. [132]
    L. A. Mucci, R. Tamimi, P. Lagiou, A. Trichopoulou, B. Benetou, E. Spanos and D. Trichopoulos, BJU Int., 87, 814 (2001)Google Scholar
  133. [133]
    M. D. Holmes, M. N. Pollak, W. C. Willett and S. E. Hankinson, Cancer Epidemiol. Biomarkers Prev., 11, 852 (2002).Google Scholar
  134. [134]
    A. Vrieling, D. W. Voskuil, J. M. Bonfrer, C. M. Korse, J. van Doom, A. Cats, A. C. Depla, R. Timmer, B. J. Witteman, F. E. van Leeuwen, L. J. Vaut Veer, M. A. Rookus and E. Kampman, Am. J. Clin. Nutr., 86, 1456 (2007).Google Scholar
  135. [135]
    K. Q. Hu and X. D. Wang, unpublished results.Google Scholar
  136. [136]
    J. E. Trosko, C. C. Chang, B. Upham and M. Wilson, Toxicol. Lett., 102–103, 71 (1998).Google Scholar
  137. [137]
    T. J. King and J. S. Bertram, Biochim. Biophys. Acta, 1719, 146 (2005).Google Scholar
  138. [138]
    M. Z. Hossain, L. R. Wilkens, P. P. Mehta, W. Loewenstein and J. S. Bertram, Carcinogenesis, 10, 1743 (1989).Google Scholar
  139. [139]
    J. S. Bertram, A. Pung, M. Churley, T. D. Kappock, L. R. Wilkins and R. V. Cooney, Carcinogenesis, 12, 671 (1991).Google Scholar
  140. [140]
    M. Rogers, J. M. Berestecky, M. Z. Hossain, H. M. Guo, R. Kadle, B. J. Nicholson and J. S. Bertram, Mol Carcinogenesis, 3, 335 (1990).Google Scholar
  141. [141]
    L. X. Zhang, R. V. Cooney and J. S. Bertram, Carcinogenesis, 12, 2109 (1991).Google Scholar
  142. [142]
    F. Khachik, G. R. Beecher and J. C. Smith Jr., J. Cell Biochem. Suppl., 22, 236 (1995).Google Scholar
  143. [143]
    L. M. Hix, A. L. Vine, S. F. Lockwood and J. S. Bertram, in Carotenoids and Retinoids: Molecular Aspects and Health Issues (ed. L. Packer, U. Obermüller-Jevic, K. Kraemer and H. Sies), p. 182, AOCS Press, Champaign, Illinois (2005).Google Scholar
  144. [144]
    M. Harnusch, W. Stahl, W. A. Schulz and H. Sies, Arch. Biochem. Biophys., 317, 423 (1995).Google Scholar
  145. [145]
    T. Nikawa, W. A. Schulz, C. E. van den Brink, M. Hamisch, P. van der Saag, W. Stahl and H. Sies, Arch. Biochem. Biophys., 316, 665 (1995).Google Scholar
  146. [146]
    W. W. Pijnappel, H. F. Hendriks, G. E. Folkers, C. E. van den Brink, E. J. Dekker, C. Edelenbosch, P. T. van der Saag and A. J. Durston, Nature, 366, 340 (1993).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 2009

Authors and Affiliations

  • Xiang-Dong Wang
    • 1
  1. 1.Nutrition and Cancer Biology Laboratory Jean Mayer USDA Human Nutrition Research Center on AgingTufts UniversityBostonUSA

Personalised recommendations