Advertisement

Carotenoids pp 53-98 | Cite as

Aggregation and Interface Behaviour of Carotenoids

  • Sonja Köhn
  • Henrike Kolbe
  • Michael Korger
  • Christian Köpsel
  • Bernhard Mayer
  • Helmut Auweter
  • Erik Lüddecke
  • Hans Bettermann
  • Hans-Dieter Martin
Part of the Carotenoids book series (CAROT, volume 4)

Abstract

Molecular aggregates attract considerable attention, as they bridge the gap between the physics of single molecules and structurally ordered crystals. Molecular self-assembly in biological systems is highly specific and fundamentally important for correct functioning in living organisms.

Keywords

Circular Dichroism Dynamic Light Scattering Circular Dichroism Spectrum Highly Orient Pyrolytic Graphite Slip Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Scheibe, Angew. Chem., 61, 300 (1949).Google Scholar
  2. [2]
    M. Kasha, Radiat. Res., 20, (1936).Google Scholar
  3. [3]
    R. M. Hochstrasser and M. Kasha, Photochem. Photobiol., 3, 317 (1964).CrossRefGoogle Scholar
  4. [4]
    E. E. Jelly, Nature, 1009, 138 (1936)CrossRefGoogle Scholar
  5. [5]
    E. E. Jelly, Nature, 139, 631 (1937).CrossRefGoogle Scholar
  6. [6]
    T. M. Raschke, J. Tsai and M. Levitt, Proc. Natl. Acad. Sci. USA., 98, 5965 (2001).CrossRefGoogle Scholar
  7. [7]
    N. Muller, Acc. Chem. Res., 23, 23 (1990).CrossRefGoogle Scholar
  8. [8]
    P. L. Privalov and S. J. Gill, Pure Appl. Chem., 61, 1097 (1989).CrossRefGoogle Scholar
  9. [9]
    J. Deruere, S. Romer, A. Dharlingue, R. A. Backhaus, M. Kuntz and B. Camara, Plant Cell, 6, 119 (1994).CrossRefGoogle Scholar
  10. [10]
    H. H. Billsten, V. Sundström and T. Polivka, J. Phys. Chem. A, 109, 1521 (2005).CrossRefGoogle Scholar
  11. [11]
    D. Hom and J. Rieger, Angew. Chem. Int. Edn., 40, 4331 (2001).Google Scholar
  12. [12]
    M. Buchwald and W. P. Jencks, Biochemistry, 7, 834 (1968).CrossRefGoogle Scholar
  13. [13]
    M. Buchwald and W. P. Jencks, Biochemistry, 7, 844 (1968).CrossRefGoogle Scholar
  14. [14]
    A. Hager, Plata, 91, 38 (1970).Google Scholar
  15. [15]
    R. G. Parr and R. G. Pearson, J. Am. Chem. Soc., 105, 7512 (1983).CrossRefGoogle Scholar
  16. [16]
    A. V. Ruban, P. Horton and A. J. Young, J. Photochem. Photobiol. B, 21, 229 (1993).CrossRefGoogle Scholar
  17. [17]
    Y. Mori, K. Yamano and H. Hashimoto, Chem. Phys. Lett., 254 84 (1996).CrossRefGoogle Scholar
  18. [18]
    C. Köpsel, Dissertation, University of Düsseldorf (1999).Google Scholar
  19. [19]
    H. Auweter, J. Benade, H. Bettermann, S. Beutner, C. Köpsel, E. Lüddecke, H. D. Martin and B. Mayer, in Proc. Int. Congr. Pigments in Food Technol., (ed. I. M. M. Mosquera, M. J. Galan and D. H. Mendez, p. 197 (Sevilla, 1999).Google Scholar
  20. [20]
    C. Köpsel, H. Möltgen, H. Schuch, H. Auweter, K. Kleinermanns, H. D. Martin and H. Bettermann, J. Mol. Struct., 750, 109 (2005).CrossRefGoogle Scholar
  21. [21]
    V. Buss, Softwareentwicklung in der Chemie, Springer (1989).Google Scholar
  22. [22]
    F. Dietz, J. Signalauszeichungsmaterialien, 1, 157 (1973).Google Scholar
  23. [23]
    F. Dietz, J. Signalauszeichungsmaterialien, 4, 237 (1973).Google Scholar
  24. [24]
    F. Dietz and C. Glier, J. Signalauszeichungsmaterialien, 1, 221 (1973).Google Scholar
  25. [25]
    K. Norland, A. Ames and T. Taylor, Photographic Sci. Eng., 14, 295 (1970).Google Scholar
  26. [26]
    G. R. Bird, K. S. Norland, A. E. Rosenoff and H. B. Michaud, Photographic Sci. Eng., 12, 196 (1968).Google Scholar
  27. [27]
    F. Zsila, Z. Bikadi, J. Deli and M. Simonyi, Chirality, 13, 446 (2001).CrossRefGoogle Scholar
  28. [28]
    F. Zsila, Z. Deli, Z. Bikadi and M. Simonyi, Chirality, 13, 739 (2001).CrossRefGoogle Scholar
  29. [29]
    F. Zsila, Z. Bikadi, J. Deli and Simonyi, Tetrahedron Lett., 42, 2561 (2001).CrossRefGoogle Scholar
  30. [30]
    Z. Bikadi, F. Zsila, J. Deli, G. Mady and M. Simonyi, Enantiomer, 7, 67 (2002).CrossRefGoogle Scholar
  31. [31]
    M. Simonyi, Z. Bikadi, F. Zsila and J. Deli, Chirality, 15, 680 (2003).CrossRefGoogle Scholar
  32. [32]
    H. D. Martin and T. Werner, J. Mol. Struct., 266, 91 (1992).CrossRefGoogle Scholar
  33. [33]
    W. I. Gruszecki, B. Zelent and R. M. Leblanc, Chem. Phys. Lett, 171, 563 (1990).CrossRefGoogle Scholar
  34. [34]
    S. Takagi, T. Yamagami, K. Takeda and T. Takagi, Agric. Biol. Chem., 51, 1567 (1987).Google Scholar
  35. [35]
    J. Lematre, B. Mandinas and C. Ernst, Photochem. Photobiol., 31, 201 (1980).CrossRefGoogle Scholar
  36. [36]
    F. Zsila, Z. Bikadi, Z. Keresztes, J. Deli and M. Simonyi, J. Phys. Chem. B, 105, 9413 (2001).CrossRefGoogle Scholar
  37. [37]
    M. Korger, Dissertation University of Düsseldorf (2005).Google Scholar
  38. [38]
    W. I. Gruszecki, J. Biol. Phys., 18, 99 (1991).CrossRefGoogle Scholar
  39. [39]
    E. Wloch, S. Wieckowski and A. M. Turek, Photosynthetica, 21, 2 (1987).Google Scholar
  40. [40]
    P. S. Song and T. A. Moore, Photochem. Photobiol., 19, 435 (1974).CrossRefGoogle Scholar
  41. [41]
    B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, Dover Publications, Inc, New York (2000).Google Scholar
  42. [42]
    H. Anweter, H. Haberkorn, W. Heckmann, D. Horn, E. Lüddecke, J. Rieger and H. Weiss, Angew. Chem. Int. Edn., 38, 2188 (1999).CrossRefGoogle Scholar
  43. [43]
    V. R. Salares, N. M. Young, P. R. Carey and H. J. Bernstein, J. Raman Spectrosc, 6, 282 (1977).CrossRefGoogle Scholar
  44. [44]
    G. Orlandi, F. Zerbetto and M. Z. Zgierski, Chem. Rev., 91, 867 (1991).CrossRefGoogle Scholar
  45. [45]
    L. Rimai, M. E. Heyde and D. Gill, J. Am. Chem. Soc., 95, 4493 (1973).CrossRefGoogle Scholar
  46. [46]
    H. Okamoto, H. O. Hamaguchi and M. Tasumi, J. Raman Spectrosc., 20, 751 (1989).CrossRefGoogle Scholar
  47. [47]
    G. Binnig, H. Rohrer, C. Gerber and E. Weibel, Phys. Rev. Lett., 49, 57 (1982).CrossRefGoogle Scholar
  48. [48]
    G. Binnig, H. Rohrer, C. Gerber and E. Weibel, Appl. Phys. Lett., 40, 178 (1982).CrossRefGoogle Scholar
  49. [49]
    G. Binnig, C. F. Quate and C. Gerber, Phys. Rev. Lett., 56, 930 (1986).CrossRefGoogle Scholar
  50. [50]
    S. N. Maganov and M.-H. Whangho, Suface Analysis with STM and AFM, VCH, Weinheim (1996).Google Scholar
  51. [51]
    S. De Feyter, A. Gesquiere, M. M. Abdel-Mottaleb, P. C. M. Grim, F. C. De Schryver, C. Meiners, M. Sieffert, S. Valiyaveettil and K. Mullen, Acc. Chem. Res., 33, 520 (2000).CrossRefGoogle Scholar
  52. [52]
    G. Leatherman, E. N. Durantini, D. Gust, T. A. Moore, A. L. Moore, S. Stone, Z. Zhou, P. Rez, Y. Z. Liu and S. M. Lindsay, J. Phys. Chem. B, 103, 4006 (1999).CrossRefGoogle Scholar
  53. [53]
    T. Miyahara and K. Kurihara, J. Am. Chem. Soc., 126, 5684 (2004).CrossRefGoogle Scholar
  54. [54]
    J. H. Fuhrhop, M. Krull, A. Schulz and D. Mobius, Langmür, 6, 497 (1990).CrossRefGoogle Scholar
  55. [55]
    E. Gomar-Nadal, G. K. Ramachandran, F. Chen, T. Burgin, C. Rovira, D. B. Amabilino and S. M. Lindsay, J. Phys. Chem. B, 108, 7213 (2004).CrossRefGoogle Scholar
  56. [56]
    G. K. Ramachandran, J. K. Tomfohr, J. Li, O. F. Sankey, X. Zarate, A. Primak, Y. Terazono, T. A. Moore, A. L. Moore, D. Gust, L. A. Nagahara and S. M. Lindsay, J. Phys. Chem. B, 107, 6162 (2003).CrossRefGoogle Scholar
  57. [57]
    A. Wegmann, B. Tieke, J. Pfeiffer and B. Hilti, J. Chem. Soc. Chem. Commun., 586 (1989).Google Scholar
  58. [58]
    L. Sereno, J. J. Silber, L. Otero, M. delValle-Bohorquez, A. L. Moore, T. A. Moore and D. Gust, J. Phys. Chem., 100, 814 (1996).CrossRefGoogle Scholar
  59. [59]
    A. L. Moore, T. A. Moore, D. Gust, J. J. Silber, L. Sereno, F. Fungo, L. Otero, G. Steinberg-Yfrach, P. A. Liddell, S.-C. Hung, H. Imahori, S. Cardoso, D. Tatman and A. N. Macpherson, Pure Appl. Chem., 69, 2111 (1997).CrossRefGoogle Scholar
  60. [60]
    A. Ion, V. Partali, H. R. Sliwka and F. G. Banica, Electrochem. Commun, 4, 674 (2002).CrossRefGoogle Scholar
  61. [61]
    B. J. Foss, A. Ion, V. Partali, H. R. Sliwka and F. G. Banica, J. Electroanal. Chem., 593, 15 (2006).CrossRefGoogle Scholar
  62. [62]
    B. J. Foss, A. Ion, V. Partali, H. R. Sliwka and F. G. Banica, Collect. Czech. Chem. Commun, 69, 1971 (2004).CrossRefGoogle Scholar
  63. [63]
    G. Duda and G. Wegner, Makromol. Chem. Rapid Commun., 9, 495 (1988).CrossRefGoogle Scholar
  64. [64]
    J. H. Fuhrhop and J. Köning, Membranes and Molecular Assemblies: The Synkinetic Approach, The Royal Society of Chemistry, Cambridge (1994).Google Scholar
  65. [65]
    S. N. Naess, A. Elgsaeter, B. J. Foss, B. J. Li, H. R. Sliwka, V. Partali, T. B. Melo and K. R. Naqvi, Helv. Chim. Acta, 89, 45 (2006).CrossRefGoogle Scholar
  66. [66]
    R. R. C. New, Liposmes—A Practical Approach, Oxford University Press, New York (1997).Google Scholar
  67. [67]
    R. B. Gennis, Biomembranes, Springer, New York (1989).Google Scholar
  68. [68]
    W. Okulski, A. Sujak and W. I. Gruszecki, Biochim. Biophys. Acta, 1509, 216 (2000).CrossRefGoogle Scholar
  69. [69]
    A. Sujak and W. I. Gruszecki, J. Photochem. Photobiol. B, 59, 42 (2000).CrossRefGoogle Scholar
  70. [70]
    A. Sujak, W. Okulski and W. I. Gruszecki, Biochim. Biophys. Acta, 1509, 255 (2000).CrossRefGoogle Scholar
  71. [71]
    A. Milon, G. Wolff, G. Ourisson and Y. Nakatani, Helv. Chim. Acta, 69, 12 (1986).CrossRefGoogle Scholar
  72. [72]
    R. Mendelsohn and R. W. Vanholten Biophys. J, 27, 221 (1979).Google Scholar
  73. [73]
    H. Y. Yamamoto and A. D. Bangham, Biochim. Biophys Acta, 507, 119 (1978).CrossRefGoogle Scholar
  74. [74]
    V. D. Kolev and D. N. Kafalieva, Photobiochem. Photobiophys, 11, 257 (1986).Google Scholar
  75. [75]
    V. D. Kolev, J. Mol. Struct., 114, 257 (1984).CrossRefGoogle Scholar
  76. [76]
    W. I. Gruszecki, Stud. Biophys, 116, 11 (1986).Google Scholar
  77. [77]
    W. I. Gruszecki, Stud. Biophys., 139, 95 (1990).Google Scholar
  78. [78]
    M. Cheron and J. Bolard, C. R. Acad. Sci. Serie III, 292, 1125 (1981).Google Scholar
  79. [79]
    S. Takagi, K. Takeda, K. Kameyama and T. Takagi, Agric. Biol. Chem., 46, 2035 (1982).Google Scholar
  80. [80]
    S. Takagi, K. Takeda, and M. Shiroishi, Agric. Biol. Chem., 46, 2217 (1982).Google Scholar
  81. [81]
    S. Takagi and K. Takeda, Agric. Biol. Chem., 47, 1435 (1983).Google Scholar
  82. [82]
    V. Buss, K. Kolster and B. Gors, Tetrahedron: Asymmetry, 4, 1 (1993).CrossRefGoogle Scholar
  83. [83]
    S. Köhn, Dissertation, University of Düsseldorf (2004).Google Scholar
  84. [84]
    N. Berova, D. Gargiulo, F. Derguini, K. Nakanishi and N. Harada, J. Am. Chem. Soc., 115, 4769 (1993).CrossRefGoogle Scholar
  85. [85]
    A. A. C. van Wijk, A. Spaans, N. Uzunbajakava, C. Otto, H. J. M. de Groot, J. Lugtenburg and F. Buda, J. Am. Chem. Soc., 127, 1438 (2005).CrossRefGoogle Scholar
  86. [86]
    R. J. Weesie, R. Verel, F. Jansen, G. Britton, J. Lugtenburg and H. J. M. deGroot, Pure Appl. Chem., 69, 2085 (1997).CrossRefGoogle Scholar
  87. [87]
    P. Bhosale, A. J. Larson, J. M. Frederick, K. Southwick, C. D. Thulin and P. S. Bernstein. J. Biol. Chem., 279, 49447 (2004).CrossRefGoogle Scholar
  88. [88]
    S. Kugimiya, T. Lazrak, M. Blancharddesce and J. M. Lehn, J. Chem. Soc. Chem. Commun., 1179 (1991).Google Scholar
  89. [89]
    B. J. Foss, S. N. Naess, H. R. Sliwka and V. Partali, Angew. Chem. Int. Edn., 42, 5237 (2003).CrossRefGoogle Scholar
  90. [90]
    B. J. Foss, H. R. Sliwka, V. Partali, C. Köpsel, B. Mayer, H. D. Martin, F. Zsila, Z. Bikadi and M. Simonyi, Chem. Eur. J., 11, 4103 (2005).CrossRefGoogle Scholar
  91. [91]
    B. J. Foss, H. R. Sliwka, V. Partali, S. N. Naess, A. Elgsaeter, T. B. Melo and K. R. Naqvi. Chem. Phys. Lipids, 134, 85 (2005).CrossRefGoogle Scholar
  92. [92]
    L. X. Wang, Z. L. Du, R. X. Li and D. C. Wu, Dyes Pigment., 65, 15 (2005).CrossRefGoogle Scholar
  93. [93]
    D. Horn and E. Lüddecke, in Fine Particles Science and Technology (ed. E. Pelizzetti), p. 761, Kluwer, Dordrecht (1996).Google Scholar
  94. [94]
    E. Hädicke, P. Müller, E. Lüddecke, E. Runge and H. Auweter, in PARTEC 2001, Int. Congr. Particle Technol., Nümberg, Germany (2001).Google Scholar
  95. [95]
    M. Drache, T. Weber and G. Schmidt-Naake, Angew. Makromol. Chem., 273, 69 (1999).CrossRefGoogle Scholar
  96. [96]
    H. D. Martin and S. Köhn, “Natural nano-sized particles containing carotenoids or other colorants, BASF-Report”, (Ludwigshafen).Google Scholar
  97. [97]
    R. R. Bidigare, M. E. Ondrusek, M. C. Kennicutt, R. Iturriaga, H. R. Harvey, R. W. Hoham and S. A. Macko, J. Phycol., 29, 427 (1993).CrossRefGoogle Scholar
  98. [98]
    D. Remias, U. Lutz-Meindl and C. Lutz. Eur. J. Phycol., 40, 259 (2005).CrossRefGoogle Scholar
  99. [99]
    C. Dahlin and H. Ryberg, Physiol. Plant., 68, 39 (1986).CrossRefGoogle Scholar
  100. [100]
    M. D. Smith, D. D. Licatalosi and J. E. Thompson, Plant Physiol., 124, 211 (2000).CrossRefGoogle Scholar
  101. [101]
    M. R. Lamb, S. K. Dutcher, C. K. Worley and C. L. Dieckmann, Genetics, 153, 721 (1999).Google Scholar
  102. [102]
    D. G. W. Roberts, M. R. Lamb and C. L. Dieckmann, Genetics, 158, 1037 (2001).Google Scholar
  103. [103]
    C. L. Dieckmann, Bioessays, 25, 410 (2003).CrossRefGoogle Scholar
  104. [104]
    N. J. Alexander and W. H. Fahrenbach, Am. J. Anatomy, 126, 41 (1969).CrossRefGoogle Scholar
  105. [105]
    K. Matsui, J. Marunouchi, and M. Nakamura, Pigm. Cell. Res., 15, 265 (2002).CrossRefGoogle Scholar
  106. [106]
    J. T. Bagnara, J. D. Taylor and M. E. Hadley, J. Cell Biol., 38, 67 (1968).CrossRefGoogle Scholar
  107. [107]
    M. G. Caiola and A. Canini, Plant Biosyst., 138, 43 (2004).CrossRefGoogle Scholar
  108. [108]
    Y. Ben-Shaul and Y. Nafrali, Protoplasma, 67, 333 (1969).CrossRefGoogle Scholar
  109. [109]
    P. Sitte, H. Falk and B. Liedvogel, in Pigments in Plants (ed. F. C. Czygan) p. 117, Fischer, Stuttgart (1980).Google Scholar
  110. [110]
    N. Ljubesic, M. Wrischer and Z. Devide. Int. J. Dev. Biol., 35, 251 (1991).Google Scholar
  111. [111]
    M. Nguyen, D. Francis and S. Schwartz, J. Sci. Food Agric., 81, 910 (2001).CrossRefGoogle Scholar
  112. [112]
    S. W. Rosso, J. Ultrastruct. Res., 20, 179 (1967).CrossRefGoogle Scholar
  113. [103]
    S. W. Rosso, J. Ultrastruct. Res., 25, 307 (1968).CrossRefGoogle Scholar
  114. [114]
    W. M. Harris and A. R. Spurr, Am. J. Bot., 56, 369 (1969).CrossRefGoogle Scholar
  115. [115]
    Z. Sun, F. X. Cunningham and E. Gantt, Proc. Natl. Acad. Sci. USA, 95, 11482 (1998).CrossRefGoogle Scholar
  116. [116]
    K. Grunewald, M. Eckert, J. Hirschberg and C. Hagen, Plant Physiol., 122, 1261 (2000).CrossRefGoogle Scholar
  117. [117]
    K. Grunewald, J. Hirschberg and C. Hagen, J. Biol. Chem., 276, 6023 (2001).CrossRefGoogle Scholar
  118. [118]
    S. Rabbani, P. Beyer, J. von Lintig, P. Hugueney and H. Kleinig, Plant Physiol., 116, 1239 (1998).CrossRefGoogle Scholar
  119. [119]
    A. Ben-Amotz, A. Katz and M. Avron, J. Phycol., 18, 529 (1982).CrossRefGoogle Scholar
  120. [120]
    P. Lodato, J. Alcaino, S. Barahona, P. Retamales and V. Cifuentes, Appl. Environ. Microbiol., 69, 4676 (2003).CrossRefGoogle Scholar
  121. [121]
    A. G. Andrewes and M. P. Starr, Phytochemistry, 15, 1009 (1976).CrossRefGoogle Scholar
  122. [122]
    H. Kuhn, J. Ultrastruct. Res., 33, 332 (1970).CrossRefGoogle Scholar
  123. [123]
    W. M. Harris and A. R. Spurr, Am. J. Bot., 56, 380 (1969).CrossRefGoogle Scholar
  124. [124]
    F. Zsila, J. Deli and M. Simonyi, Planta, 213, 937 (2001).CrossRefGoogle Scholar
  125. [125]
    S. Nechifor, C. Socaciu, F. Zsila and G. Britton, in Proc. 2nd Int. Congr. Pigments in Food, p. 155 (Lisbon, 2002).Google Scholar
  126. [126]
    M. O. Senge, H. Hope and K. M. Smith, Z. Naturforsch. C., 47, 474 (1992).Google Scholar
  127. [127]
    C. Sterling, Acta Cryst., 17, 1224 (1964).CrossRefGoogle Scholar
  128. [128]
    H. Hashimoto, Y. Sawahara, Y. Okada, K. Hattori, T. Inoue and R. Matsushima, Jpn. J. Appl. Phys. Part 1, 37, 1911 (1998).CrossRefGoogle Scholar
  129. [129]
    K. Gaier, A. Angerhofer and H. C. Wolf, Chem. Phys. Lett., 187, 103 (1991).CrossRefGoogle Scholar
  130. [130]
    K. Shibata, Biochim. Biophys. Acta, 22, 398 (1956).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 2008

Authors and Affiliations

  • Sonja Köhn
    • 1
  • Henrike Kolbe
    • 1
  • Michael Korger
    • 1
  • Christian Köpsel
    • 1
  • Bernhard Mayer
    • 1
  • Helmut Auweter
    • 2
  • Erik Lüddecke
    • 2
  • Hans Bettermann
    • 1
  • Hans-Dieter Martin
    • 1
  1. 1.Institute of Organic Chemistry and Macromolecular ChemistryUniversity of DüsseldorfDüsseldorfGermany
  2. 2.BASF AGLuwigshafenGermany

Personalised recommendations