Advertisement

Carotenoids pp 341-366 | Cite as

Enzymic Pathways for Formation of Carotenoid Cleavage Products

  • Peter Fleischmann
  • Holger Zorn
Part of the Carotenoids book series (CAROT, volume 4)

Abstract

Degraded carotenoids (apocarotenoids, norisoprenoids) have been a subject of intensive research for several decades. From the perspective of human physiology and nutrition, the retinoids, acting as vitamins, signalling molecules, and visual pigments, attracted the greatest attention (Chapters 15 and 16). Plant scientists, however, detected a wealth of different apocarotenoids, presumably derived by the excentric cleavage of carotenoids in various species, the plant hormone abscisic acid (1, Scheme 6) being the best-investigated example. With the onset of fruit ripening, flower opening or senescence of green tissues, carotenoids are degraded oxidatively to smaller, volatile compounds. The natural biological functions of the reaction products are outlined in Chapter 15. As many of these apocarotenoids act as potent flavour compounds, food chemists and flavourists worldwide have investigated meticulously their structural and sensory properties. Many aspects of carotenoid metabolites and breakdown products as aroma compounds are presented in a comprehensive book [1].

Keywords

Crocus Sativus Enzymic Pathway Flavour Compound Petunia Hybrida Versatile Peroxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Winterhalter and R. L. Rouseff (eds.), Carotenoid-derived Aroma Compounds, Americal Chemical Society, Washington (2002).Google Scholar
  2. [2]
    I. Wahlberg and A.-M. Eklund, in Carotenoids, Vol. 3: Biosynthesis and Metabolism (ed. G. Britton, S. Liaaen-Jensen and H. Pfander), p. 195. Burkhäuser, Basel (1998).Google Scholar
  3. [3]
    H. Schmidt, R. Kurzer, W. Eisenreich and W. Schwab, J. Biol. Chem., 281, 9845 (2006).CrossRefGoogle Scholar
  4. [4]
    M. G. Leuenberger, C. Engeloch-Jarret and W.-D. Woggon, Angew. Chem. Int. Ed., 40, 2613 (2001).CrossRefGoogle Scholar
  5. [5]
    P. Werkhoff, W. Bretschneider, M. Güntert, R. Hopp and H. Surburg, Z. Lebensm. Unters. Forsch., 192, 111 (1991).CrossRefGoogle Scholar
  6. [6]
    R. G. Buttery, R. Teranishi and L. C. Ling, Chem. Ind., 7, 238 (1988).Google Scholar
  7. [7]
    B. M. Lawrence, Perfum. Flavor., 3, 11 (1978).Google Scholar
  8. [8]
    K. Kumazawa and H. Masuda, J. Agric. Food Chem., 47, 5169 (1999).CrossRefGoogle Scholar
  9. [9]
    F. Mayer, M. Czerny and W. Grosch, Eur. Food Res. Technol., 211, 272 (2000).CrossRefGoogle Scholar
  10. [10]
    B. L. Raina, S. G. Agarwal, A. K. Bhatia and G. S. Gaur, J. Sci. Food Agric., 71, 27 (1996).CrossRefGoogle Scholar
  11. [11]
    G. Skouroumounis, in Carotenoid-derived Aroma Compounds (ed. P. Winterhalter and R. L. Rouseff), p. 214, American Chemical Society, Washington (2002).Google Scholar
  12. [12]
    E. Demole, P. Enggist, M. Winter, A. Furrer, K.-H. Schulte-Elte, B. Egger and G. Ohloff, Helv. Chim. Acta, 62, 67 (1979).CrossRefGoogle Scholar
  13. [13]
    A. J. Aasen, B. Kimland, S. Almquist and C. R. Enzell, Acta Chem. Scand., 26B, 2573 (1972).CrossRefGoogle Scholar
  14. [14]
    W. Renold, R. Müller, U. Keller, B. Willhalm and G. Ohloff, Helv. Chim. Acta, 57, 1301 (1974).CrossRefGoogle Scholar
  15. [15]
    K. Ina, T. Takano, Y. Imai and Y. Sakato, Agric. Biol. Chem., 36, 1033 (1972).Google Scholar
  16. [16]
    R. Kaiser and D. Lamparsky, Helv. Chim. Acta, 61, 373 (1978).CrossRefGoogle Scholar
  17. [17]
    Y. Wache, A. Bosser-DeRatuld and J.-M. Belin, in Carotenoid-derived Aroma Compounds (ed. P. Winterhalter and T. L. Rouseff), p. 102. American Chemical Society, Washington (2002).Google Scholar
  18. [18]
    J. Crouzet, in Carotenoid-derived Aroma Compounds (ed. P. Winterhalter and R. L. Rouseff), p. 115, American Chemical Society, Washington (2002).Google Scholar
  19. [19]
    Y. Nishida, H. Ohrui and H. Meguro, Agric. Biol. Chem., 47, 2969 (1983).Google Scholar
  20. [20]
    T. Tsuneya, M. Ishihara, H. Shiota and M. Shiga, Agric. Biol. Chem., 47, 2495 (1983).Google Scholar
  21. [21]
    S. Escher and Y. Niclass, Helv. Chim. Acta, 74, 179 (1991).CrossRefGoogle Scholar
  22. [22]
    P. Winterhalter and R. Rouseff, in Carotenoid-derived Aroma Compounds (ed. P. Winterhalter and R. L. Rouseff), p. 1, American Chemical Society, Washington (2002).Google Scholar
  23. [23]
    P. Winterhalter, A. Lutz and P. Schreier, Tetrahedron Lett., 32, 3669 (1991).CrossRefGoogle Scholar
  24. [24]
    R. Näf and A. Velluz, Tetrahedron Lett., 32, 4487 (1991).CrossRefGoogle Scholar
  25. [25]
    A. Lutz, P. Winterhalter and P. Schreier, Tetrahedron Lett., 32, 5943 (1991).CrossRefGoogle Scholar
  26. [26]
    R. Kaiser and P. Kraft, Chem. Zeit, 35, 9 (2001).Google Scholar
  27. [27]
    R. Kaiser, in Carotenoid-derived Aroma Compounds (ed. P. Winterhalter and R. L. Rouseff), p. 160, American Chemical Society, Washington (2002).Google Scholar
  28. [28]
    S. Mathieu, N. Terrier, J. Procureur, F. Bigey and Z. Günata, J. Exp. Bot., 56, 2721 (2005).CrossRefGoogle Scholar
  29. [29]
    H. MacTavish, N. W. Davies and R. C. Menary, in Carotenoid-derived Aroma Compounds (ed. P. Winterhalter and R. L. Rouseff), p. 183, American Chemical Society, Washington (2002).Google Scholar
  30. [30]
    P. Fleischmann, K. Studer and P. Winterhalter, J. Agric. Food Chem., 50, 1677 (2002).CrossRefGoogle Scholar
  31. [31]
    M. Suzuki, S. Matsumoto, P. Fleischmann, H. Shimada, Y. Yamano, M. Ito and N. Watanabe, in Carotenoid-derived Aroma Compounds (ed. P. Winterhalter and R. L. Rouseff), p. 89, American Chemical Society, Washington (2002).Google Scholar
  32. [32]
    N. Oka, H. Ohishi, T. Hatano, M. Hornberger, K. Sakata and N. Watanabe, Z. Naturforsch. C, 54, 889 (1999).Google Scholar
  33. [33]
    P. Winterhalter and P. Schreier, Food Rev. Int., 11, 237 (1995).CrossRefGoogle Scholar
  34. [34]
    V. M. Dembitzky, Lipids, 40, 535 (2005).CrossRefGoogle Scholar
  35. [35]
    G. Schmidt, G. Full, P. Winterhalter and P. Schreier, J. Agric. Food Chem., 40, 1188 (1992).CrossRefGoogle Scholar
  36. [36]
    P. Winterhalter and P. Schreier, J. Agric. Food Chem., 36, 560 (1988).CrossRefGoogle Scholar
  37. [37]
    H. Zorn, S. Langhoff, M. Scheibner, M. Nimtz and R. G. Berger, Biol. Chem., 384, 1049 (2003).CrossRefGoogle Scholar
  38. [38]
    P. Luning, A. Carey, J. Roozen and H. Wichers, J. Agric. Food Chem., 43, 1493 (1995).CrossRefGoogle Scholar
  39. [39]
    D. P. Kloer and G. E. Schulz, Cell. Mol. Life Sci., 63, 2291 (2006).CrossRefGoogle Scholar
  40. [40]
    F. Bouvier, J.-C. Isner, O. Dogbo and B. Camara, Trends Plant Sci., 10, 187 (2005).CrossRefGoogle Scholar
  41. [41]
    M. E. Auldridge, D. R. McCarty and H. E. Klee, Curr. Opinion Plant Biol., 9, 315 (2006).CrossRefGoogle Scholar
  42. [42]
    A. J. Simkin, B. A. Underwood, M. Auldridge, H. M. Loucas, K. Shibuya, E. Schmelz, D. G. Clark and H. J. Klee, Plant Physiol., 136, 3504 (2004).CrossRefGoogle Scholar
  43. [43]
    A. Ohmiya, S. Kishimoto, R. Aida, S. Yoshioka and K. Sumitomo, Plant Physiol., 142, 1193 (2006).CrossRefGoogle Scholar
  44. [44]
    P. Fleischmann, S. Baldermann, M. Yamamoto, N. Watanabe and P. Winterhalter, in State-of-the-Art in Flavour Chemistry and Biology (ed. T. Hofmann, M. Rothe and P. Schieberle), p. 234, Deutsche Forschungsanstalt für Lebensmittelchemie, Garching, (2005).Google Scholar
  45. [45]
    S. H. Schwartz, B.-C. Tan, D. A. Gage, J. A. D. Zeevaart and D. R. McCarty, Science, 276, 1872 (1997).CrossRefGoogle Scholar
  46. [46]
    T. Oritani and H. Kiyota, Nat. Prod. Rep., 20, 414 (2003).CrossRefGoogle Scholar
  47. [47]
    B.-C. Tan, S. H. Schwartz, J. A. D. Zeevaart and D. R. McCarty, Proc. Natl. Acad. Sci. USA, 94, 12235 (1997).CrossRefGoogle Scholar
  48. [48]
    B.-C. Tan, K. Cline and D. R. McCarty, Plant J., 27, 373 (2001).CrossRefGoogle Scholar
  49. [49]
    S. Liotenberg, H. North and A. Marion-Poll, Plant Physiol. Biochem., 37, 341 (1999).CrossRefGoogle Scholar
  50. [50]
    S. H. Schwartz, X. Qin and J. A. D. Zeevaart, Plant Physiol., 131, 1591 (2003).CrossRefGoogle Scholar
  51. [51]
    H. Naested, A. Holm, T. Jenkins, H. B. Nielsen, C. A. Harris, M. H. Beale, M. Andersen, A. Mant, H. Scheller, B. Camara, O. Mattsson and J. Mundy, J. Cell Sci., 117, 4807 (2004).CrossRefGoogle Scholar
  52. [52]
    S. J. Neill, E. C. Burnett, R. Desikan and J. T. Hancock, J. Exp. Bot., 49, 1893 (1998).CrossRefGoogle Scholar
  53. [53]
    B.-C. Tan, L. M. Joseph, W.-T. Deng, L. Liu, Q.-B. Li, K. Cline and D. R. McCarty, Plant J., 35, 44 (2003).CrossRefGoogle Scholar
  54. [54]
    S. Iuchi, M. Kobayashi, T. Teruaki, M. Naramoto, M. Seki, T. Kato, S. Tabata, Y. Kakubari, K. Yamaguchi-Shinozaki and K. Shinozaki, Plant J., 27, 325 (2001).CrossRefGoogle Scholar
  55. [55]
    J. T. Chernys and J. A. D. Zeevaart, Plant Physiol., 124, 343 (2000).CrossRefGoogle Scholar
  56. [56]
    A. Burbidge, T. Grieve, A. Jackson, A. Thompson and I. Taylor, J. Exp. Bot., 48, 2111 (1997).CrossRefGoogle Scholar
  57. [57]
    A. J. Thompson, A. C. Jackson, R. A. Parker, D. R. Morpeth, A. Burbidge and I. B. Taylor, Plant Mol. Biol., 42, 833 (2000).CrossRefGoogle Scholar
  58. [58]
    A. Burbidge, T. M. Grieve, A. Jackson, A. Thompson, D. R. McCarty and I. B. Taylor, Plant J., 17, 427 (1999).CrossRefGoogle Scholar
  59. [59]
    S. Iuchi, M. Kobayashi, K. Yamaguchi-Shinozaki and K. Shinozaki, Plant Physiol., 123, 553 (2000).CrossRefGoogle Scholar
  60. [60]
    X. Qin and J. A. D. Zeevaart, Proc. Natl. Acad. Sci. USA, 96, 15354 (1999).CrossRefGoogle Scholar
  61. [61]
    M. Kalala, A. K. Cowan, P. Molnár and G. Tóth, S. Afr. J. Bot., 67, 376 (2001).Google Scholar
  62. [62]
    X. Qin and J. A. D. Zeevaart, Plant Physiol., 128, 544 (2002).CrossRefGoogle Scholar
  63. [63]
    S. H. Schwartz, X. Qin and M. C. Loewen, J. Biol. Chem., 279, 46940 (2004).CrossRefGoogle Scholar
  64. [64]
    J. Booker, M. Auldridge, S. Wills, D. R. McCarty, H. Klee and O. Leyser, Curr. Biol., 14, 1232 (2004).CrossRefGoogle Scholar
  65. [65]
    S. H. Schwartz, X. Qin and J. A. D. Zeevaart, J. Biol. Chem., 276, 25208 (2001).CrossRefGoogle Scholar
  66. [66]
    G. Giuliano, S. Al-Babili and J. von Lintig, Trends Plant Sci., 8, 145 (2003).CrossRefGoogle Scholar
  67. [67]
    T. Fester, W. Maier and D. Strack, Mycorrhiza, 8, 241 (1999).CrossRefGoogle Scholar
  68. [68]
    A. J. Simkin, S. H. Schwartz, M. Auldridge, M. G. Taylor and H. J. Klee, Plant J., 40, 882 (2004).CrossRefGoogle Scholar
  69. [69]
    B. Camara and F. Bouvier, Arch. Biochem. Biophys., 430, 16 (2004).CrossRefGoogle Scholar
  70. [70]
    F. Bouvier, C. Suire, J. Mutterer and B. Camara, Plant Cell, 15, 47 (2003).CrossRefGoogle Scholar
  71. [71]
    Y. Cao, X.-L. Guo, Q. Zhang, Z.-Y. Cao, Y.-X. Zhao and H. Zhang, Plant Growth Regul., 46, 61 (2005).CrossRefGoogle Scholar
  72. [72]
    R. McCarty and B.-C. Tan, PCT Int. Appl. WO 2003-US38669 20031205 (2004).Google Scholar
  73. [73]
    E. Lewinsohn, Y. Sitrit, E. Bar, Y. Azulay, M. Ibdah, A. Meir, E. Yosef, D. Zamir and Y. Tadmor, Trends Food Sci. Technol., 16, 407 (2005).CrossRefGoogle Scholar
  74. [74]
    E. Lewinsohn, Y. Sitrit, E. Bar, Y. Azulay, A. Meir, D. Zamir and Y. Tadmor, J. Agric. Food Chem., 53, 3142 (2005).CrossRefGoogle Scholar
  75. [75]
    P. Fleischmann, N. Watanabe and P. Winterhalter, Phytochemistry, 63, 131 (2003).CrossRefGoogle Scholar
  76. [76]
    S. Baldermann, M. Naim and P. Fleischmann, Food Res. Int., 38, 833 (2005).CrossRefGoogle Scholar
  77. [77]
    F. Jüttner and B. Höflacher, Arch. Microbiol., 141, 337 (1985).CrossRefGoogle Scholar
  78. [78]
    F. Bouvier, O. Dogbo and B. Camara, Science, 300, 2089 (2003).CrossRefGoogle Scholar
  79. [79]
    K. C. Snowden, A. J. Simkin, B. J. Janssen, K. R. Templeton, H. M. Loucas, J. L. Simons, S. Karunairetnam, A. P. Gleave, D. G. Clark and H. J. Klee, Plant Cell, 17, 746 (2005).CrossRefGoogle Scholar
  80. [80]
    E. Foo, E. Bullier, M. Goussot, F. Foucher, C. Rameau and C. A. Beveridge, Plant Cell, 17, 464 (2005).CrossRefGoogle Scholar
  81. [81]
    K. Sorefan, J. Booker, K. Haurogne, M. Goussot, K. Bainbridge, E. Foo, S. Chatfield, S. Ward, C. Beveridge, C. Rameau and O. Leyser, Genes Dev., 17, 1469 (2003).CrossRefGoogle Scholar
  82. [82]
    S. Ruch, P. Beyer, H. Ernst and S. Al-Babili, Mol. Microbiol., 55, 1015 (2005).CrossRefGoogle Scholar
  83. [83]
    J. D. Thompson, D. G. Higgins and T. J. Gibson, Nucleic Acids Res., 22, 4673 (1994).CrossRefGoogle Scholar
  84. [84]
    J. Felsenstein, Cladistics, 5, 164 (1989).Google Scholar
  85. [85]
    L. W. Haas and R. M. Bohn, U.S. Patent 1957-333-1957-337 (1934).Google Scholar
  86. [86]
    Y. Wache, A. Bosser-DeRatuld, J.-C. Lhuguenot and J.-M. Belin, J. Agric. Food Chem., 51, 1984 (2003).CrossRefGoogle Scholar
  87. [87]
    S. Aziz, Z. Wu and D. S. Robinson, Food Chem., 64, 227 (1999).CrossRefGoogle Scholar
  88. [88]
    D. Waldmann and P. Schreier, J. Agric. Food Chem., 43, 626 (1995).CrossRefGoogle Scholar
  89. [89]
    A. Sanchez-Contreras, M. Jiminez and S. Sanchez, Appl. Microbiol. Biotechnol., 54, 528 (2000).CrossRefGoogle Scholar
  90. [99]
    E. Rodriguez-Bustamante, G. Maldonado-Robledo, M. A. Ortiz, C. Diaz-Avalos and S. Sanchez, Appl. Microbiol, Biotechnol., 68, 174 (2005).CrossRefGoogle Scholar
  91. [91]
    F. J. Ruiz-Duenas, M. J. Martinez and A. T. Martinez, Mol. Microbiol., 31, 223 (1999).CrossRefGoogle Scholar
  92. [92]
    H. Zorn, S. Langhoff, M. Scheibner and R. G. Berger, Appl. Microbiol. Biotechnol., 62, 331 (2003).CrossRefGoogle Scholar
  93. [93]
    Y. Sugano, K. Sasaki and M. Shoda, J. Biosci. Bioeng., 87, 411 (1999).CrossRefGoogle Scholar
  94. [94]
    J. Kanner and H. Mendel, J. Food Sci., 42, 1549 (1977).CrossRefGoogle Scholar
  95. [95]
    P. Gelinas, E. Poitras, M. McKinnon and A. Morin, Cereal Chem., 75, 810 (1998).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 2008

Authors and Affiliations

  • Peter Fleischmann
    • 1
  • Holger Zorn
    • 2
  1. 1.Institute of Food ChemistryTU BraunschweigBraunschweigGermany
  2. 2.Technical Biochemistry Workgroup Fachbereich Bio- und ChemieingenieurwesenUniversität DortmundDortmundGermany

Personalised recommendations