Carotenoids pp 325-340 | Cite as

Cleavage of β-Carotene to Retinal

  • Adrian Wyss
  • Johannes von Lintig
Part of the Carotenoids book series (CAROT, volume 4)


Elucidating the physiological roles played by vitamins has always been a major goal of nutritionists and biochemists. In humans, vitamin A deficiency disorder (VADD) in milder forms leads to night blindness, whilst more severe progression can lead to corneal malformations, e.g. xerophthalmia (See Volume 5, Chapters 8 and 9). This deficiency also affects the immune system, leads to infertility and causes malformations during embryogenesis. The molecular basis for these diverse effects lies in the dual role of vitamin A (retinol, 1) derivatives. In all visual systems, retinal (2), or a closely related compound such as 3-hydroxyretinal (3), is the chromophore of the visual pigments (e.g. rhodopsin) [1,2]. In vertebrates, the derivative retinoic acid (RA, 4) is a major signalling molecule that controls a wide range of processes. Retinoic acid is the ligand of the nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs) [3, 4, 5, 6] (see Chapter 15).


Retinoic Acid Retinal Pigment Epithelium Cleavage Enzyme Visual Pigment Night Blindness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Vogt, Z. Naturforsch, 38, 329 (1983).Google Scholar
  2. [2]
    G. Wald, Nature, 219, 800 (1968).CrossRefGoogle Scholar
  3. [3]
    V. Giguere, E. S. Ong, P. Segui and R. M. Evans, Nature, 330, 624 (1987).CrossRefGoogle Scholar
  4. [4]
    M. Petkovich, N. J. Brand, A. Krust and P. Chambon, Nature, 330, 444 (1987).CrossRefGoogle Scholar
  5. [5]
    D. J. Mangelsdorf and R. M. Evans, Cell, 83, 841 (1995).CrossRefGoogle Scholar
  6. [6]
    P. Chambon, FASEB J., 10, 940 (1996).Google Scholar
  7. [7]
    B. A. Underwood, J. Nutr., 134, 231S (2004).Google Scholar
  8. [8]
    T. B. Osborne and L. B. Mendel, J. Biol. Chem., 15, 311 (1913).Google Scholar
  9. [9]
    E. V. McCollum and M. Davis, J. Biol. Chem., 15, 167 (1913).Google Scholar
  10. [10]
    H. Steenbock, Science, 50, 352 (1919).CrossRefGoogle Scholar
  11. [11]
    T. Moore, Biochem. J., 24, 692 (1930).Google Scholar
  12. [12]
    P. Karrer, A. Helfenstein, H. Wehrli and A. Wettstein, Helv. Chim. Acta., 13, 1084 (1930).CrossRefGoogle Scholar
  13. [13]
    J. Glover and E. R. Redfearn, Process Biochem., 58, xv (1954).Google Scholar
  14. [14]
    J. A. Olson and O. Hayaishi, Proc. Natl. Acad. Sci. USA, 54, 1364 (1965).CrossRefGoogle Scholar
  15. [15]
    D. S. Goodman and H. S. Huang, Science, 149, 879 (1965).CrossRefGoogle Scholar
  16. [16]
    M. G. Leuenberger, C. Engeloch-Jarret and W. D. Woggon, Angew. Chem. Int. Ed., 40, 2613 (2001).CrossRefGoogle Scholar
  17. [17]
    D. S. Goodman, R. Blomstrand, B. Werner, H. S. Huang and T. Shiratori, J. Clin. Invest., 45, 1615 (1966).CrossRefGoogle Scholar
  18. [18]
    N. H. Fidge, F. R. Smith and D. S. Goodman, Biochem. J., 114, 689 (1969).Google Scholar
  19. [19]
    D. Sklan, Br. J. Nutr., 50, 417 (1983).CrossRefGoogle Scholar
  20. [20]
    J. A. Olson, J. Nutr., 119, 105 (1989).Google Scholar
  21. [21]
    T. van Vliet, F. van Schaik, W. H. Schreurs and H. van den Berg, Int. J. Vitam. Nutr. Res., 66, 77 (1996).Google Scholar
  22. [22]
    C. Duszka, P. Grolier, E. M. Azim, M. C. Alexandre-Gouabau, P. Borel and V. Azais-Braesco, J. Nutr., 126, 2550 (1996).Google Scholar
  23. [23]
    A. During, A. Nagao, C. Hoshino and J. Terao, Anal. Biochem., 241, 199 (1996).CrossRefGoogle Scholar
  24. [24]
    J. Devery and B. V. Milborrow, Br. J. Nutr., 72, 397 (1994).CrossRefGoogle Scholar
  25. [25]
    A. A. Dmitrovskii, V. Iu. Ershov and V. Bykhovskii, Prikl Biokhim Mikrobiol, 28, 199 (1992).Google Scholar
  26. [26]
    M. R. Lakshman, I. Mychkovsky and M. Attlesey, Proc. Natl. Acad. Sci. USA, 86, 9124 (1989).CrossRefGoogle Scholar
  27. [27]
    A. Nagao, A. During, C. Hoshino, J. Terao and J. A. Olson, Arch. Biochem. Biophys., 328, 57 (1996).CrossRefGoogle Scholar
  28. [28]
    M. R. Lakshmanan, H. Chansang and J. A. Olson, J. Lipid Res., 13, 477 (1972).Google Scholar
  29. [29]
    X. D. Wang, G. W. Tang, J. G. Fox, N. I. Krinsky and R. M. Russell, Arch. Biochem. Biophys. 285, 8 (1991).CrossRefGoogle Scholar
  30. [30]
    S. N. Gershoff, S. B. Andrus, D. M. Hegsted and E. A. Lentini, Lab. Invest. 6, 227 (1957).Google Scholar
  31. [31]
    H. Singh and H. R. Cama, Biochim. Biophys. Acta, 370, 49 (1974).Google Scholar
  32. [32]
    S. H. Schwartz, B. C. Tan, D. A. Gage, J. A. Zeevaart and D. R. McCarty, Science, 276, 1872 (1997).CrossRefGoogle Scholar
  33. [33]
    A. Wyss, G. Wirtz, W. Woggon, R. Brugger, M. Wyss, A. Friedlein, H. Bachmann and W. Hunziker, Biochem. Biophys. Res. Commun., 271, 334 (2000).CrossRefGoogle Scholar
  34. [34]
    J. von Lintig and K. Vogt, J. Biol. Chem., 275, 11915 (2001).CrossRefGoogle Scholar
  35. [35]
    J. von Lintig and A. Wyss, Arch. Biochem. Biophys., 385, 47 (2001).CrossRefGoogle Scholar
  36. [36]
    R. S. Stephenson, J. O’Tousa, N. J. Scavarda, L. L. Randall and W. L. Pak, in The Biology of Photoreception (ed. D. J. Cosens and D. Vince-Price), p. 477, Cambridge University Press, Cambridge (1983).Google Scholar
  37. [37]
    J. von Lintig, A. Dreher, C. Kiefer, M. F. Wernet and K. Vogt, Proc. Natl. Acad. Sci. USA, 98, 1130 (2001).CrossRefGoogle Scholar
  38. [38]
    A. Wyss, G. M. Wirtz, W. D. Woggon, R. Brugger M. Wyss, A. Friedlein, G. Riss, H. Bachmann and W. Hunziker, Biochem. J., 354, 521 (2001).CrossRefGoogle Scholar
  39. [39]
    T. M. Redmond, S. Gentleman, T. Duncan, S. Yu, B. Wiggert, E. Gantt and F. X. Cunningham, Jr., J. Biol. Chem., 276, 6560 (2001).CrossRefGoogle Scholar
  40. [40]
    W. Paik, A. During, E. H. Harrison, C. L. Mendelsohn, K. Lai and W. S. Blaner, J. Biol. Chem., 276, 32160 (2001).CrossRefGoogle Scholar
  41. [41]
    W. Yan, G. F. Jang, F. Haeseleer, N. Esumi J. Chang, M. Kerrigan, M. Campochiaro, P. Campochiaro, K. Palczewski and D. J. Zack, Genomics, 72, 193 (2001).CrossRefGoogle Scholar
  42. [42]
    A. Lindqvist and S. Andersson, J. Biol. Chem., 277, 23942 (2002).CrossRefGoogle Scholar
  43. [43]
    C. O. Bavik, F. Levy, U. Hellman, C. Wernstedt and U. Eriksson, J. Biol. Chem., 268, 20540 (1993).Google Scholar
  44. [44]
    C. P. Hamel, E. Tsilou, B. A. Pfeffer, J. J. Hooks, B. Detrick and T. M. Redmond, J. Biol. Chem., 268, 15751 (1993).Google Scholar
  45. [45]
    M. Jin, S. Li, W. N. Moghrabi, H. Sun and G. H. Travis, Cell, 122, 449 (2005).CrossRefGoogle Scholar
  46. [46]
    G. Moiseyev, Y. Chen, Y. Takahashi, B. X. Wu and J. X. Ma, Proc. Natl. Acad. Sci. USA, (2005).Google Scholar
  47. [47]
    T. M. Redmond, E. Poliakov, S. Yu, J. Y. Tsai, Z. Lu and S. Gentleman, Proc. Natl. Acad Sci. USA, 102, 13658 (2005).CrossRefGoogle Scholar
  48. [48]
    C. Kiefer, S. Hessel, J. M. Lampert K. Vogt, M. O. Lederer, D. E. Breithaupt and J. von Lintig, J. Biol. Chem., 276, 14110 (2001).Google Scholar
  49. [49]
    A. Chawla, J. J. Repa, R. M. Evans and D. J. Mangelsdorf, Science, 294, 1866 (2001).CrossRefGoogle Scholar
  50. [50]
    T. M. Redmoud, S. Yu, E. Lee, D. Bok, D. Hamasaki, N. Chen, P. Goletz, J. X. Ma, R. K. Crouch and K. Pfeifer, Nature Genet, 20, 344 (1998).CrossRefGoogle Scholar
  51. [51]
    S. M. Gu, D. A. Thompson, C. R. Srikumari, B. Lorenz, U. Finckh, A. Nicoletti, K. R. Murthy, M. Rathmann, G. Kumaramanickavel, M. J. Denton and A. Gal, Nature Genet., 17, 194 (1997).CrossRefGoogle Scholar
  52. [52]
    F. Marthens, C. Bareil, J. M. Griffoin, E. Zrenner, P. Amalric C. Eliaou, S. Y. Liu, E. Harris, T. M. Redmond, B. Arnaud, M. Claustres and C. P. Hamel, Nature Genet. 17, 139 (1997).CrossRefGoogle Scholar
  53. [53]
    P. S. Bernstein, W. C. Law and R. R. Rando, J. Biol. Chem., 262, 16848 (1987).Google Scholar
  54. [54]
    Y. Takahashi, G. Moiseyev, Y. Chen and J. X. Ma, FEBS Lett., 579, 5414 (2005).CrossRefGoogle Scholar
  55. [55]
    S. Ruch, P. Beyer, H. Ernst and S. Al-Babili, Mol Microbiol, 55, 1015 (2005).CrossRefGoogle Scholar
  56. [56]
    D. P. Kloer, S. Ruch, S. Al-Babili, P. Beyer and G. E. Schulz, Science, 308, 267 (2005).CrossRefGoogle Scholar
  57. [57]
    E. Poliakov, S. Gentleman, F. X. Cunningham, Jr., N. J. Miller-Ihli and T. M. Redmond, J. Biol. Chem., 280, 29217 (2005).CrossRefGoogle Scholar
  58. [58]
    G. Wolf, Nutr. Rev., 53, 134 (1995).CrossRefGoogle Scholar
  59. [59]
    R. V. Sharma, S. N. Mathur and J. Ganguly, Biochem. J., 158, 377 (1976).Google Scholar
  60. [60]
    R. V. Sharma, S. N. Mathur, A. A. Dmitrovskii, R. C. Das and J. Ganguly, Biochim. Biophys. Acta, 486, 183 (1976).Google Scholar
  61. [61]
    X. D. Wang, N. I. Krinsky, G. W. Tang and R. M. Russell, Arch. Biochem. Biophys., 293, 298 (1992).CrossRefGoogle Scholar
  62. [62]
    X. D. Wang, R. M. Russell, R. P. Marini, G. Tang, G. G. Dolnikowski, J. G. Fox and N. I. Krinsky, Biochim. Biophys. Acta, 1167, 159 (1993).Google Scholar
  63. [63]
    D. S. Goodman, H. S. Huang and T. Shiratori, J. Biol. Chem., 241, 1929 (1966).Google Scholar
  64. [64]
    H. Schmidt, R. Kurzer, W. Eisenreich and W. Schwab, J. Biol. Chem., 281, 9845 (2006).CrossRefGoogle Scholar
  65. [65]
    L. Villard and C. J. Bates, Br. J. Nutr., 56, 115 (1986).CrossRefGoogle Scholar
  66. [66]
    T. van Vliet, M. F. van Vlissingen, F. van Schaik and H. van den Berg J. Nutr., 126, 499 (1996).Google Scholar
  67. [67]
    V. Iu. Ershov, A. A. Dmitrovskii and V. Bykhovskii, Biokhimiia, 58, 733 (1993).Google Scholar
  68. [68]
    P. Grolier, C. Duszka, P. Borel, M. C. Alexandre-Gouabau and V. Azais-Braesco, Arch. Biochem. Biophys., 348, 233 (1997).CrossRefGoogle Scholar
  69. [69]
    S. G. Parvin and B. Sivakumar, J. Nutr., 130, 573 (2000).Google Scholar
  70. [70]
    A. Boulanger, P. McLemore, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, S. S. Yu, S. Gentleman and T. M. Redmond, FASEB J. 17, 1304 (2003).Google Scholar
  71. [71]
    K. Suruga, K. Mochizuki, M. Kitagawa, T. Goda, N. Horie, K. Takeishi and S. Takase, Arch. Biochem. Biophys., 362, 159 (1999).CrossRefGoogle Scholar
  72. [72]
    J. M. Lampert, J. Holzschuh, S. Hessel, W. Driever, K. Vogt and J. von Lintig, Development, 130, 2173 (2003).CrossRefGoogle Scholar
  73. [73]
    R. A. Bhatti, S. Yu, A. Boulanger, R. N. Fariss, Y. Guo, S. L. Bernstein, S. Gentleman and T. M. Redmond, Invest. Ophthalmol. Vis. Sci., 44, 44 (2003).CrossRefGoogle Scholar
  74. [74]
    G. R. Chichili, D. Nohr, M. Schaffer, J. von Lintig and H. K. Biesalski, Invest. Ophthalmol. Vis. Sci., 46, 3562 (2005).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 2008

Authors and Affiliations

  • Adrian Wyss
    • 1
  • Johannes von Lintig
    • 2
  1. 1.DSM Nutritional ProductsR & D-Human Nutrition and HealthBaselSwitzerland
  2. 2.Department of PharmacologyCase Western Case UniversityClevelandUSA

Personalised recommendations