Carotenoids pp 309-324 | Cite as

Functions of Carotenoid Metabolites and Breakdown Products

  • George Britton
Part of the Carotenoids book series (CAROT, volume 4)


It is not only intact carotenoids but also fragments of carotenoid molecules that have important natural functions and actions. The electron-rich polyene chain of the carotenoids is very susceptible to oxidative breakdown, which may be enzymic or non-enzymic. Central cleavage gives C20 compounds, retinoids, as described in Chapter 16. Cleavage at other positions gives smaller fragments, notably C10, C13 and C15 compounds that retain the carotenoid end group. The formation of these is described in Chapter 17 and in Volume 3, Chapter 4. Oxidative breakdown can also take place during storage, processing and curing of plant material, and the products contribute to the desired aroma/flavour properties of, for example, tea, wine and tobacco. The importance of vitamin A (C20) in animals is well known. Vitamin A deficiency is still a major concern in many parts of the world. It can lead to blindness and serious ill-health or death, especially in young children. Volatile smaller carotenoid fragments (‘norisoprenoids’) are widespread scent/flavour compounds in plants.


Retinoic Acid Schiff Base Visual Pigment Purple Membrane Oxidative Breakdown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. B. Sporn, A. B. Roberts and D. S. Goodman, (eds.), The Retinoids: Biology, Chemistry and Medicine, 2nd Edn., Raven Press, New York (1994).Google Scholar
  2. [2]
    R. Blomhoff (ed.), Vitamin A in Health and Disease, Dekker, New York (1994).Google Scholar
  3. [3]
    L. Packer, U. Obermüller-Jevic, K. Kraemer and H. Sies (eds.), Carotenoids and Retinoids: Molecular Aspects and Health Issues, AOCS Press, Champaign, IL (2004).Google Scholar
  4. [4]
    B. Hoyos and U. Hammerling, in Carotenoids and Retinoids: Molecular Aspects and Health Issues (ed. L. Packer, U. Obermüller-Jevic, K. Kraemer and H. Sies), p. 42, AOCS Press, Champaign, IL (2004).Google Scholar
  5. [5]
    P. Kastner, P. Chambon and M. Leid, in Vitamin A in Health and Disease (ed. R. Blomhoff), p. 189, Dekker, New York (1994).Google Scholar
  6. [6]
    D. J. Mangelsdorf, K. Umesono and R. M. Evans, in The Retinoids: Biology, Chemistry and Medicine, 2nd Edn., (ed. M. B. Sporn, A. B. Roberts and D. S. Goodman), p. 319, Raven Press, New York (1994).Google Scholar
  7. [7]
    P. Chambon, FASEB J., 10, 940 (1996).Google Scholar
  8. [8]
    K. Nakanishi, Pure Appl. Chem., 63, 161 (1991).CrossRefGoogle Scholar
  9. [9]
    W. J. de Grip and A. Watts (eds.), Biophys. Chem., Special Issue, 56, 1 (1995).Google Scholar
  10. [10]
    M. G. Holmes (ed.), Photoreceptor Evolution and Function, Academic Press, London (1991).Google Scholar
  11. [11]
    D. J. Cosens and D. Vince-Price (eds.), The Biology of Photoreception, Cambridge University Press, Cambridge (1983)Google Scholar
  12. [12]
    K. Nakanishi, Pure Appl. Chem., 57, 769 (1985).CrossRefGoogle Scholar
  13. [13]
    K. Nakanishi, A.-H. Cheng, F. Dergulni, P. Franklin, S. Hu and J. Wang, Pure Appl. Chem., 66, 981 (1994).CrossRefGoogle Scholar
  14. [14]
    W. J. de Grip, F. de Lange, P. Bovee, P. J. E. Verdegem and J. Lugtenburg, Pure Appl. Chem., 69, 2091 (1997).CrossRefGoogle Scholar
  15. [15]
    L. Stryer, Biochemistry, 4th Edn., p. 318, 332. Freeman, New York (1995).Google Scholar
  16. [16]
    N. A. Campbell and J. B. Reece, Biology, 6th Edn., p. 1063, Benjamin Cummings, San Francisco (2002).Google Scholar
  17. [17]
    C. W. Oyster, The Human Eye: Structure and Function, Sinauer, Sunderland (1999).Google Scholar
  18. [18]
    G. Wald, Nature, 219, 800 (1968).CrossRefGoogle Scholar
  19. [19]
    C. D. B. Bridges, in Handbook of Sensory Physiology, Vol. II/I: The Photochemistry of Vision (ed. H. J. A. Dartuall), p. 417. Springer, Berlin (1972).Google Scholar
  20. [20]
    K. Vogt and K. Kirschfeld, Naturwiss., 71, 211 (1984).CrossRefGoogle Scholar
  21. [21]
    S. Matsui, M. Seidou, I. Uchiyama, N. Sekiya, K. Hiraki, K. Yoshihara and Y. Kito, Biochim. Biophys. Acta, 966, 370 (1988).Google Scholar
  22. [22]
    P. A. Hargrave, H. E. Hamm and K. P. Hoffmann, Bioassays, 15, 43 (1993).CrossRefGoogle Scholar
  23. [23]
    K. Nakanishi, H. Zhang, K. A. Lerro, S.-I. Takekuma, T. Yamamoto, T. H. Lien, L. Sastry, D.-J. Baek, C. Moquin-Pattey, M. F. Boehm, F. Derguini and M. A. Gawinowicz, Biophys. Chem., 56, 13 (1994).CrossRefGoogle Scholar
  24. [24]
    S. T. Menon, M. Han and T. P. Sakmar, Physiol. Rev., 81, 1659 (2001).Google Scholar
  25. [25]
    R. W. Schoenlein, L. A. Peteanue, R. A. Mathies and C. V. Shank, Science, 254, 412 (1991).CrossRefGoogle Scholar
  26. [26]
    R. R. Birge, Biochim. Biophys. Acta, 1016, 293 (1990).CrossRefGoogle Scholar
  27. [27]
    Y. Shichida, S. Matuoka and T. Yoshizawa, Photobiochem. Photobiophys., 7, 221 (1984).Google Scholar
  28. [28]
    P. A. Hargrave and J. H. McDowell, Int. Rev. Cytol., 137B, 49 (1992).Google Scholar
  29. [29]
    R. R. Rando, Biochemistry, 30, 595 (1991).CrossRefGoogle Scholar
  30. [30]
    R. R. Rando, Pure Appl. Chem., 66, 989 (1994).CrossRefGoogle Scholar
  31. [31]
    P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. van Boemel, L. Wu, M. Yang and H. F. W. Fong, Nature Genet., 28, 256 (2001).CrossRefGoogle Scholar
  32. [32]
    D. R. Pepperberg and R. K. Crouch, Lancet, 358, 2098 (2001).CrossRefGoogle Scholar
  33. [33]
    T. Seki, J. Gen. Physiol., 84, 49 (1984).CrossRefGoogle Scholar
  34. [34]
    J. K. Bowmaker and H. J. Dartnall, J. Physiol., 298, 501 (1980).Google Scholar
  35. [35]
    R. A. Mathies, S. W. Lin, J. B. Ames and W. T. Pollard, Ann. Rev. Biophys. Chem., 20, 491 (1991).CrossRefGoogle Scholar
  36. [36]
    H. G. Khorana, J. Biol. Chem., 263, 7439 (1988).Google Scholar
  37. [37]
    D. Oesterhelt, C. Bräuchle and N. Hampp, Quart. Rev. Biophys., 24, 425 (1991).Google Scholar
  38. [38]
    S. P. Balashov, E. S. Imasheva, V. A. Boichenko, J. Anton, J. M. Wang and J. K. Lanyi, Science, 309, 2061 (2005).CrossRefGoogle Scholar
  39. [39]
    R. D. Smyth, J. Saranak and K. W. Foster, Progr. Phycol. Res., 6, 255 (1988).Google Scholar
  40. [40]
    P. Winterhalter and R. L. Rouseff (eds.), Carotenoid-derived Aroma Compounds, American Chemical Society, Washington (2002).Google Scholar
  41. [41]
    M. Wei, X. Deng and J. Du, Ying Yong Sheng Tai Xue Bao, 16, 907 (2005).Google Scholar
  42. [42]
    F. T. Addicott (ed.), Abscisic Acid, Praeger, New York (1983).Google Scholar
  43. [43]
    D. C. Walton and Y. Li, in Plant Hormones (ed. P. J. Davies), p. 140, Kluwer, Dordrecht (1995).Google Scholar
  44. [44]
    J. D. Bu’Lock, in Biosynthesis of Isoprenoid Compounds, Vol. 2 (ed. J. W. Porter and S. L. Spurgeou), p. 437, Wiley, New York (1983).Google Scholar
  45. [45]
    J. Meinwald, K. Erickson, M. Hartshorn, Y. C. Meinwald and T Eisner, Tetrahedron Lett., 2959 (1968).Google Scholar
  46. [46]
    J. Brooks and G. Shaw, Nature, 220, 678 (1968).CrossRefGoogle Scholar
  47. [47]
    G. W. Gooday, Ann. Rev. Biochem., 43, 35 (1974).CrossRefGoogle Scholar
  48. [48]
    W. J. Guilford, D. M. Schneider, J. Labovitz and S. J. Opella, Plant Physiol., 86, 134 (1988).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 2008

Authors and Affiliations

  • George Britton
    • 1
  1. 1.School of Biological SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations