Advertisement

Carotenoids pp 265-308 | Cite as

Carotenoids in Photosynthesis

  • Alison Telfer
  • Andrew Pascal
  • Andrew Gall
Part of the Carotenoids book series (CAROT, volume 4)

Abstract

Carotenoids are the secret ingredient in photosynthesis; masked by the green of chlorophyll, they are only revealed in their true glory during senescence, when chlorophyll is degraded to display the glowing colours of autumn. Yet the presence of these orange and yellow pigments is absolutely essential for oxygenic photosynthesis. This Chapter will explain the importance of carotenoids to oxygenic organisms and also their roles in anoxygenic photosynthetic bacteria, where their presence is often more obvious but in other ways may be less crucial.

Keywords

PSII Reaction Centre Green Sulphur Bacterium Antenna Complex Reaction Centre Complex Carotenoid Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Nitschke and A. W. Rutherford, Trends Biochem. Sci., 16, 241 (1991).Google Scholar
  2. [2]
    D. Siefermann-Harms, Physiol. Plantarum., 69, 561 (1987).Google Scholar
  3. [3]
    Y. Wang, L. Mao and X. Hu, Biophys. J., 86, 3097 (2004).Google Scholar
  4. [4]
    R. E. Blankenship (ed.), Molecular Mechanisms of Photosynthesis, Marston Books Services, Oxford (2002).Google Scholar
  5. [5]
    R. J. Cogdell, Pure Appl. Chem., 57, 723 (1985).Google Scholar
  6. [6]
    H. A. Frank, A. J. Young, G. Britton and R. J. Cogdell (eds.), The Photochemistry of Carotenoids, Kluwer Academic Publisher, Dordrecht (1999).Google Scholar
  7. [7]
    A. J. Young and G. Britton (eds.), Carotenoids in Photosynthesis, Chapman and Hall, London (1993).Google Scholar
  8. [8]
    J. Deisenhofer, O. Epp, K. Miki, R. Huber and H. Michel, Nature, 318, 618 (1985).Google Scholar
  9. [9]
    W. L. Delano (ed.), The Pymol User’s Manual, Delano Scientific, Palo Alto (2002).Google Scholar
  10. [10]
    C. R. D. Lancaster, U. Ermler and H. Michel, in Anoxygenic Photosynthetic Bacteria (ed. R. E. Blankenship, M. T. Madigan and C. E. Bauer), p. 503, Kluwer Academic Publishers, Dordrecht (1995).Google Scholar
  11. [11]
    A. J. Hoff and J. Deisenhofer, Physics Rep., 287, 1 (1997).Google Scholar
  12. [12]
    H. Hashimoto, R. Fujii, K. Yanagi, T. Kusumoto, A. T. Gardiner, R. J. Cogdell, A. W. Roszak, N. W. Issacs, Z. Pendon, D. Niedzwiedski and H. A. Frank, Pure Appl. Chem., 78, 1505 (2006).Google Scholar
  13. [13]
    A. W. Roszak, K. McKendrick, A. T. Gardiner, I. A. Mitchell, N. W. Isaacs, R. J. Cogdell, H. Hashimoto and H. A. Frank, Structure, 12, 765 (2004).Google Scholar
  14. [14]
    Y. Koyama and R. Fujii, in The Photochemistry of Carotenoids (ed. H. A. Frank, A. J. Young, G. Britton and R. J. Cogdell), p. 161, Kluwer Academic Publisher, Dordrecht (1999).Google Scholar
  15. [15]
    M. Lutz, L. Chinsky and P. Y. Turpin, Photochem. Photobiol., 36, 503 (1982).Google Scholar
  16. [16]
    Y. Mukai-Kuroda, R. Fujii, N. Ko-chi, T. Sashima and Y. Koyama, J. Phys. Chem. A., 106, 3566 (2002).Google Scholar
  17. [17]
    N. Ohashi, N. KoChi, M. Kuki, T. Shimamura, R. J. Cogdell and Y. Koyama, Biospectroscopy, 2, 59 (1996).Google Scholar
  18. [18]
    M. Chen, A. Telfer, S. Lin, A. Pascal, A. W. D. Larkum, J. Barber and R. E. Blankenship, Photochem. Photobiol. Sci. 4, 1060 (2005).Google Scholar
  19. [19]
    B. Loll, J. Kern, W. Saenger, A. Zouni and J. Biesiadka, Nature, 438, 1040 (2005).Google Scholar
  20. [20]
    A. Telfer, Photochem Photobiol. Sci., 4, 950 (2005).Google Scholar
  21. [21]
    K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, Science, 303, 1831 (2004).Google Scholar
  22. [22]
    P. Jordan, P. Fromme, H. T. Witt, O. Klukas, W. Saenger and N. Krauss, Nature, 411, 909 (2001).Google Scholar
  23. [23]
    A. Ben-Shem, F. Frolow and N. Nelson, Nature, 426, 630 (2003).Google Scholar
  24. [24]
    A. Amunts, O. Drory and N. Nelson, nature, 447, 58 (2007).Google Scholar
  25. [25]
    N. Pfennig, in The Photosynthetic Bacteria (ed. R. K. Clayton and W. R. Sistrom), p. 3, Plenum Publishing Corporation, New York (1978).Google Scholar
  26. [26]
    H. Zuber and R. J. Cogdell, in Anoxygenic Photosynthetic Bacteria (ed. R. E. Blankenship, M. T. Madigan and C. E. Bauer), p. 315, Kluwer Academic Publishers, Dordrecht (1995).Google Scholar
  27. [27]
    A. Freer, S. Prince, K. Sauer, M. Papiz, A. Hawthornthwaite-Lawless, G. McDermott, R. Cogdell and N. W. Isaacs, Structure, 4, 449 (1996).Google Scholar
  28. [28]
    J. Koepke, X. Hu, C. Muenke, K. Schulten and H. Michel, Structure, 4, 581 (1996).Google Scholar
  29. [29]
    G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell and N. W. Isaacs, Nature, 374, 517 (1995).Google Scholar
  30. [30]
    A. W. Roszak, T. D. Howard, J. Southall, A. T. Gardiner, C. J. Law, N. W. Isaacs and R. J. Cogdell, Science, 302, 1969 (2003).Google Scholar
  31. [31]
    R. J. Cogdell, H. Zuber, J. P. Thornber, G. Drews, G. Gingras, R. A. Niederman, W. W. Parson and G. Feher, Biochim. Biophys. Acta, 806, 185 (1985).Google Scholar
  32. [32]
    R. J. Cogdell, A. Gall and J. Köhler, Q. Rev. Biophys., 39, 227 (2006).Google Scholar
  33. [33]
    S. Karrasch, P. A. Bullough and R. Ghosh, EMBO J. 14, 631 (1995).Google Scholar
  34. [34]
    A. Gall, S. Henry, S. Takaichi, B. Robert and R. Cogdell, Photosynth. Res., 86, 25 (2005).Google Scholar
  35. [35]
    M. Z. Papiz, S. M. Prince, T. Howard, R. J. Cogdell and N. W. Isaacs, J. Mol. Biol., 326, 1523 (2003).Google Scholar
  36. [36]
    J. B. Arellano, B. B. Raju, K. R. Naqvi and T. Gillbro, Photochem. Photobiol., 68, 84 (1998).Google Scholar
  37. [37]
    V. Cherezov, J. Clogston, M. Z. Papiz and M. Caffrey, J. Mol. Biol., 357, 1605 (2006).Google Scholar
  38. [38]
    A. Gall, A. T. Gardiner, R. J. Cogdell and B. Robert, FEBS Lett., 580, 3841 (2006).Google Scholar
  39. [39]
    G. Cohen-Bazire and R. Y. Stanier, Nature, 181, 250 (1958).Google Scholar
  40. [40]
    R. C. Fuller and I. C. Anderson, Nature, 181, 252 (1958).Google Scholar
  41. [41]
    C. N. Hunter, B. S. Hundle, J. E. Hearst, H. P. Lang, A. T. Gardiner, S. Takaichi and R. J. Cogdell, J. Bacteriol., 176, 3692 (1994).Google Scholar
  42. [42]
    H. P. Lang, R. J. Cogdell, A. T. Gardiner and C. N. Hunter, J. Bacteriol., 176, 3859 (1994).Google Scholar
  43. [43]
    H. P. Lang and C. N. Hunter, Biochem. J., 298, 197 (1994).Google Scholar
  44. [44]
    K. R. Miller, Proc. Natl. Acad. Sci. USA, 76, 6415 (1979).Google Scholar
  45. [45]
    Z. Liu, H. Yan, K. Wang, T. Kuang, J. Zhang, L. Gui, X. An and W. Chang, Nature, 428, 287 (2004).Google Scholar
  46. [46]
    J. Standfuss and W. Kühlbrandt, J. Biol. Chem., 279, 36884 (2004).Google Scholar
  47. [47]
    F. G. Plumley and G. W. Schmidt, Proc. Natl. Acad. Sci. USA, 84, 146 (1987).Google Scholar
  48. [48]
    R. Croce, S. Weiss and R. Bassi, J. Biol. Chem., 274, 29613 (1999).Google Scholar
  49. [49]
    A. V. Ruban, P. J. Lee, M. Wentworth, A. J. Young and P. Horton, J. Biol. Chem., 274, 10458 (1999).Google Scholar
  50. [50]
    F. Ros, R. Bassi and H. Paulsen, Eur. J. Biochem., 253, 653 (1998).Google Scholar
  51. [51]
    J. Nield and J. Barber, Biochim. Biophys. Acta, 1757, 353 (2006).Google Scholar
  52. [52]
    A. E. Yakushevska, W. Keegstra, E. J. Boekema, J. P. Dekker, J. Andersson, S. Jansson, A. V. Ruban and P. Horton, Biochemistry, 42, 608 (2003).Google Scholar
  53. [53]
    R. Croce, M. Mozzo, T. Morosinotto, A. Romeo, R. Hienerwadel and R. Bassi, Biochemistry, 46, 3846 (2007).Google Scholar
  54. [54]
    V. K. Schmid, K. V. Cammarata, B. U. Bruns and G. W. Schmidt, Proc. Natl. Acad. Sci. USA, 94, 7667 (1997).Google Scholar
  55. [55]
    D. G. Durnford, J. A. Deane, S. Tan, G. I. McFadden, E. Gantt and B. R. Green, J. Mol. Evol., 48, 59 (1999).Google Scholar
  56. [56]
    G. Guglielmi, J. Lavaud, B. Rousseau, A.-L. Etienne, J. Houmard and A. V. Ruban, FEBS J., 272, 4339 (2005).Google Scholar
  57. [57]
    E. Papagiannakis, I. H. M. van Stokkum, H. Fey, C. Büchel and R. van Grondelle, Photosynth. Res., 85, 241 (2005).Google Scholar
  58. [58]
    M. Chen and T. S. Bibby, Photosynth. Res., 86, 165 (2005).Google Scholar
  59. [59]
    M. Chen, R. G. Quinnell and A. W. D. Larkum, FEBS Lett., 514, 149 (2002).Google Scholar
  60. [60]
    T. S. Bibby, J. Nield, M. Chen, A. W. D. Larkum and J. Barber, Proc. Natl. Acad. Sci. USA 100, 9050 (2003).Google Scholar
  61. [61]
    M. Chen, T. S. Bibby, J. Nield, A. Larkum and J. Barber, Biochim. Biophys. Acta, 1708, 367 (2005).Google Scholar
  62. [62]
    M. Chen, T. S. Bibby, J. Nield, A. W. D. Larkum and J. Barber, FEBS Lett., 579, 1306 (2005).Google Scholar
  63. [63]
    N. U. Frigaard and D. Bryant, Arch. Microbiol., 182, 265 (2004).Google Scholar
  64. [64]
    N.-U. Frigaard, H. Li, P. Martinsson, S. Das, H. Frank, T. Aartsma and D. Bryant, Photosynth. Res., 86, 101 (2005).Google Scholar
  65. [65]
    T. Nozawa, K. Ohtomo, M. Suzuki, H. Nakagawa, Y. Shikama, H. Konami and Z. Y. Wang, Photosynth. Res., 41, 211 (1994).Google Scholar
  66. [66]
    J. Psencik, J. B. Arellano, T. P. Ikonen, C. M. Borrego, P. A. Laurinmaki, S. J. Butcher, R. E. Serimaa and R. Tuma, Biophys. J., 91, 1433 (2006).Google Scholar
  67. [67]
    J. Psencik, T. P. Ikonen, P. Laurinmaki, M. C. Merckel, S. J. Butcher, R. E. Serimaa and R. Tuma, Biophys. J., 87, 1165 (2004).Google Scholar
  68. [68]
    E. Hofmann, P. M. Wrench, F. P. Sharples, R. G. Hiller, W. Welte and K. Diederichs, Science, 272, 1788 (1996).Google Scholar
  69. [69]
    A. Oren, Saline Sys., 1, 2 (2005).Google Scholar
  70. [70]
    T. Tomo, T. Okubo, S. Akimoto, M. Yokono, H. Miyashita, T. Tsuchiya, T. Noguchi and M. Mimuro, Proc. Natl. Acad. Sci. USA, 104, 7283 (2007).Google Scholar
  71. [71]
    Q. Hu, H. Miyashita, I. Iwasaki, N. Kurano, S. Miyachi, M. Iwaki and S. Itoh, Proc. Natl. Acad. Sci. USA, 95, 13319 (1998).Google Scholar
  72. [72]
    N. Adir, H. Zer, S. Shochat and I. Ohad, Photosynth. Res., 76, 343 (2003).Google Scholar
  73. [73]
    M. Havaux, F. Eymery, S. Porfirova, P. Rey and P. Dörmann, Plant. Cell., 17, 3451 (2005).Google Scholar
  74. [74]
    P. J. Nixon, M. Barker, M. Boehm, R. de Vries and J. Komenda, J. Exp. Bot., 56, 357 (2005).Google Scholar
  75. [75]
    M. Havaux and K. K. Niyogi, Proc. Natl. Acad. Sci. USA, 96, 8762 (1999).Google Scholar
  76. [76]
    M. P. Johnson, M. Havaux, C. Triantaphylides, B. Ksas, A. A. Pascal, B. Robert, P. A. Davison, A. V. Ruban and P. Horton, J. Biol. Chem., 282, 22605 (2007).Google Scholar
  77. [77]
    H. T. Witt, Biochim. Biophys. Acta, 505, 355 (1979).Google Scholar
  78. [78]
    C. H. Foyer and J. Harbinson, in The Photochemistry of Carotenoids (ed. H. A. Frank, A. J. Young, G. Britton and R. J. Cogdell), p. 305, Kluwer Academic Publisher, Dordrecht (1999).Google Scholar
  79. [79]
    E. J. G. Peterman, F. M. Dukker, R. Van Grondelle and H. van Amerougen, Biophys. J., 69, 2670 (1995).Google Scholar
  80. [80]
    S. L. S. Kwa, F. G. Groeneveld, J. P. Dekker, R. van Grondelle, H. van Amerongen, S. Lin and W. S. Struve, Biochim. Biophys. Acta, 1101, 143 (1992).Google Scholar
  81. [81]
    J. Barber and M. D. Archer, J. Photochem. Photobiol. A: Chem., 142, 97 (2001).Google Scholar
  82. [82]
    A. Telfer, T. C. Oldham, D. Phillips and J. Barber, J. Photochem. Photobiol. B, 48, 89 (1999).Google Scholar
  83. [83]
    V. Barzda, E. J. G. Peterman, R. van Grondelle and H. van Amerongen, Biochemistry, 37, 546 (1998).Google Scholar
  84. [84]
    N. Mochizuki, J. A. Brusslan, R. Larkin, A. Nagatani and J. Chory, Proc. Natl. Acad. Sci. USA, 98, 2053 (2001).Google Scholar
  85. [85]
    A. Krieger-Liszkay, J. Exp. Bot., 56, 337 (2005).Google Scholar
  86. [86]
    A. Telfer, Phil. Trans. Roy. Soc. Lond. B., 357, 1431 (2002).Google Scholar
  87. [87]
    N. Keren, A. Berg, P. J. M. van Kan, H. Levanon and I. Ohad, Proc. Natl. Acad. Sci. USA, 94, 1579 (1997).Google Scholar
  88. [88]
    H. J. van Gorkom and J. P. M. Schelvis, Photosynth. Res., 38, 297 (1993).Google Scholar
  89. [89]
    A. Telfer, S. Dhami, S. M. Bishop, D. Phillips and J. Barber, Biochemistry, 33, 14469 (1994).Google Scholar
  90. [90]
    R. Edge and T. G. Truscott, in The Photochemistry of Carotenoids. (ed. H. A. Frank, A. J. Young, G. Britton and R. J. Cogdell), p. 223, Kluwer Academic Publisher, Dordrecht (1999).Google Scholar
  91. [91]
    K. Maxwell and G. N. Johnson, J. Exp. Bot., 51, 659 (2000).Google Scholar
  92. [92]
    B. Demmig-Adams and W. W. Adams, Trends Plant Sci., 1, 21 (1996).Google Scholar
  93. [93]
    X. P. Li, O. Björkman, C. Shih, A. R. Grossman, M. Rosenquist, S. Jansson and K. K. Niyogi, Nature, 403, 391 (2000).Google Scholar
  94. [94]
    P. Horton, A. V. Ruban, D. Rees, G. Noctor, A. A. Pascal and A. J. Young, FEBS Lett., 292, 1 (1991).Google Scholar
  95. [95]
    A. A. Pascal, Z. Liu, K. Broess, B. van Oort, H. van Oort, H. van Amerongen, C. Wang, P. Horton, B. Robert, W. Chang and A. V. Ruban, Nature, 436, 134 (2005).Google Scholar
  96. [96]
    A. V. Ruban, R. Berera, C. Ilioaia, I. H. M. van Stokkum, J. T. M. Kennis, A. A. Pascal, H. van Amerongen, B. Robert, P. Horton and R. van Grondelle, Nature, 450, 575 (2007).Google Scholar
  97. [97]
    M. Aspinall-O’Dea, M. Wentworth, A. Pascal, B. Robert, A. Ruban and P. Horton, Proc. Natl. Acad. Sci. USA, 99, 16331 (2002).Google Scholar
  98. [98]
    N. E. Holt, D. Zigmantas, L. Valkunas, X. P. Li, K. K. Niyogi and G. R. Fleming, Science, 307, 433 (2005).Google Scholar
  99. [99]
    A. V. Ruban, J. Lavaud, B. Rousseau, G. Guglielmi, P. Horton and A.-L. Etienne, Photosynth. Res., 82, 165 (2004).Google Scholar
  100. [100]
    G. Kurisu, H. Zhang, J. L. Smith and W. A. Cramer, Science, 302, 1009 (2003).Google Scholar
  101. [101]
    D. Stroebel, Y. Choquet, J. L. Popot and D. Picot, Nature, 426, 413 (2003).Google Scholar
  102. [102]
    H. M. Zhang, D. R. Huang and W. A. Cramer, J. Biol. Chem., 274, 1581 (1999).Google Scholar
  103. [103]
    E. J. G. Peterman, S. O. Wenk, T. Pullerits, L. O. Palsson, R. van Grondelle, J. P. Dekker, M. Rögner and H. van Amerongen, Biophys. J., 75, 389 (1998).Google Scholar
  104. [104]
    R. Edge, E. J. Land, D. J. McGarvey, M. Burke and T. G. Truscott, FEBS Lett., 471, 125 (2000).Google Scholar
  105. [105]
    A. Telfer, D. Frolov, J. Barber, B. Robert and A. Pascal, Biochemistry, 42, 1008 (2003).Google Scholar
  106. [106]
    C. A. Tracewell and G. W. Brudvig, Biochemistry, 42, 9127 (2003).Google Scholar
  107. [107]
    C. C. Moser and P. L. Dutton, Biochim. Biophys. Acta, 1101, 171 (1992).Google Scholar
  108. [108]
    P. A. Loach and P. S. Parkes-Loach, in Anoxygenic Photosynthetic Bacteria (ed. R. E. Blankenship, M. T. Madigan and C. E. Bauer), p. 437, Kluwer Academic Publishers, Dordrecht (1995).Google Scholar
  109. [109]
    G. E. Bartley and P. A. Scolnik, J. Biol. Chem., 264, 13109 (1989).Google Scholar
  110. [110]
    S. Takaichi, in The Photochemistry of Carotenoids. (ed. H. A. Frank, A. J. Young, G. Britton and R. J. Cogdell), p. 39, Kluwer Academic Publisher, Dordrecht (1999).Google Scholar
  111. [111]
    P. M. Bramley, in Carotenoids in Photosynthesis (ed. A. J. Young and G. Britton), p. 127, Chapman and Hall, London (1993).Google Scholar
  112. [112]
    A. Gall, R. J. Cogdell and B. Robert, Biochemistry, 42, 7252 (2003).Google Scholar
  113. [113]
    J. D. Olsen, B. Robert, C. A. Siebert, P. A. Bullough and C. N. Hunter, Biochemistry, 42, 15114 (2003).Google Scholar
  114. [114]
    C. M. Davis, P. L. Bustamante and P. A. Loach, J. Biol. Chem., 270, 5793 (1995).Google Scholar
  115. [115]
    L. Fiedor and H. Scheer, J. Biol. Chem., 280, 20921 (2005).Google Scholar
  116. [116]
    S. Hobe, H. Niemeier, A. Bender and H. Paulsen, Eur. J. Biochem., 267, 616 (2000).Google Scholar
  117. [117]
    L. N. M. Duysens, Science, 120, 353 (1954).Google Scholar
  118. [118]
    B. Chance and L. Smith, Nature, 175, 803 (1955).Google Scholar
  119. [119]
    H. T. Witt, in Bioenergetics of Photosynthesis (ed. Govindjee ), p. 493, Academic Press, New York (1975).Google Scholar
  120. [120]
    J. B. Jackson and A. R. Crofts, FEBS Lett., 4, 185 (1969).Google Scholar
  121. [121]
    A. R. Crofts, V. P. Shinkarev, D. R. J. Kolling and S. J. Hong, J. Biol. Chem., 278, 36191 (2003).Google Scholar
  122. [122]
    M. A. Palacios, S. Caffarri, R. Bassi, R. van Grondelle and H. van Amerongen, Biochim. Biophys. Acta, 1656, 177 (2004).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 2008

Authors and Affiliations

  • Alison Telfer
    • 1
  • Andrew Pascal
    • 2
  • Andrew Gall
    • 2
  1. 1.Division of Molecular BiosciencesImperial College LondonLondonUK
  2. 2.Institute de Biologie et Technologies de Saclay (iBiTecS) Service de Bioeénergétique, Biologie Structural et Mécanismes (SB2SM)Commissaria á ľÉnergie Atomique (CEA)Gif sur YvetteFrance

Personalised recommendations