Advertisement

A Short Description of Kinetic Models for Chemotaxis

  • Fabio A.C.C. Chalub
  • José Francisco Rodrigues
Part of the Trends in Mathematics book series (TM)

Abstract

We describe how the Keller-Segel model can be obtained as a driftdiffusion limit of kinetic models. Three different examples with global kinetic solutions yield different chemotactical sensitivity functions, including the case of a constant coefficient, where blow up in the limit may occur, the case with density threshold and an intermediate case for which the corresponding perturbed Keller-Segel models have global solutions.

Keywords

Kinetic Model Global Existence Singular Limit Complex Social Behavior Amoeba Dictyostelium Discoideum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Alt, Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol., 9 (1980) n. 2, 147–177.CrossRefMathSciNetGoogle Scholar
  2. [2]
    F.A.C.C. Chalub and K. Kang, Global convergence of a kinetic model for chemotaxis to a perturbed Keller-Segel model, Nonlinear Analysis: Theory, Methods and Applications 64 (2006), 686–695.CrossRefMathSciNetGoogle Scholar
  3. [3]
    F.A.C.C. Chalub, P. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsch. Math., 142 (2004) n. 1-2, 123–141.CrossRefMathSciNetGoogle Scholar
  4. [4]
    F.A.C.C. Chalub and J.F. Rodrigues, Kinetic models for chemotaxis with threshold, Portugaliae Math. 63 (2006). To appear.Google Scholar
  5. [5]
    J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in ℝ 2, C. R. Math. Acad. Sci. Paris, 339 (2004) n. 9, 611–616.MathSciNetGoogle Scholar
  6. [6]
    H. Gajewski and K. Zacharias, Global behaviour of a reaction diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77–114.MathSciNetGoogle Scholar
  7. [7]
    M.A. Herrero and J.J.L. Velázquez, Chemotactic collapse for the Keller-Segel model, J. Math. Biol., 35 (1996) n. 2, 177–194.CrossRefMathSciNetGoogle Scholar
  8. [8]
    T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. in Appl. Math., 26 (2001) n. 4, 280–301.CrossRefMathSciNetGoogle Scholar
  9. [9]
    T. Hillen and H.G. Othmer, The diffusion limit of transport equations derived from velocity-jump processes, SIAM J. Appl. Math., 61 (2000) n. 3, 751–775 (electronic).CrossRefMathSciNetGoogle Scholar
  10. [10]
    D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003) n. 3, 103–165.MathSciNetGoogle Scholar
  11. [11]
    D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Deutsch. Math.-Verein., 106 (2004) n. 2, 51–69.MathSciNetGoogle Scholar
  12. [12]
    H.J. Hwang, K. Kang and A. Stevens, Drift-diffusion limits of kinetic models for chemotaxis: a generalization, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005) n. 2, 319–334.Google Scholar
  13. [13]
    W. Jager and S. Luckhaus, On explosions of solutions on a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992) n. 2, 819–824.CrossRefMathSciNetGoogle Scholar
  14. [14]
    E.F. Keller and L.A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415.CrossRefGoogle Scholar
  15. [15]
    E.F. Keller and L.A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234.CrossRefGoogle Scholar
  16. [16]
    T. Nagai, Global existence of solutions to a parabolic system for chemotaxis in two space dimensions, In Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), 30 (1997), 5381–5388.MathSciNetGoogle Scholar
  17. [17]
    T. Nagai, Global existence and blowup of solutions to a chemotaxis system, In Proceedings of the Third World Congress of Nonlinear Analysts, Part 2 (Catania, 2000), 47 (2001), 777–787.MathSciNetGoogle Scholar
  18. [18]
    H.G. Othmer, S.R. Dunbar and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988) n. 3, 263–298.CrossRefMathSciNetGoogle Scholar
  19. [19]
    H.G. Othmer and T. Hillen, The diffusion limit of transport equations. II. Chemotaxis equations, SIAM J. Appl. Math., 62 (2002) n. 4, 1222–1250.CrossRefMathSciNetGoogle Scholar
  20. [20]
    C.S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311–338.CrossRefMathSciNetGoogle Scholar
  21. [21]
    A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J. Appl. Math., 61 (2000) n. 1, 183–212.CrossRefMathSciNetGoogle Scholar
  22. [22]
    J.J.L Velázquez, Point dynamics in a singular limit of the Keller-Segel model. I, Motion of the concentration regions, SIAM J. Appl. Math., 64 (2004) n. 4, 1198–1223 (electronic).CrossRefMathSciNetGoogle Scholar
  23. [23]
    J.J.L. Velázquez, Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions, SIAM J. Appl. Math., 64 (2004) n. 4, 1224–1248 (electronic).CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Fabio A.C.C. Chalub
    • 1
  • José Francisco Rodrigues
    • 2
  1. 1.Centro de Matemática e Aplicacoes FundamentaisUniversidade de LisboaLisboaPortugal
  2. 2.Centro de Matemática da Universidade de Coimbra Portugal and FCUL/Universidade de Lisboa c/o CMAFLisboaPortugal

Personalised recommendations