Advertisement

Methods, applications and concepts of metabolite profiling: Secondary metabolism

  • Lloyd W. Sumner
  • David V. Huhman
  • Ewa Urbanczyk-Wochniak
  • Zhentian Lei
Part of the Experientia Supplementum book series (EXS, volume 97)

Abstract

Plants manufacture a vast array of secondary metabolites/natural products for protection against biotic or abiotic environmental challenges. These compounds provide increased fitness due to their antimicrobial, anti-herbivory, and/or alleopathic activities. Secondary metabolites also serve fundamental roles as key signaling compounds in mutualistic interactions and plant development. Metabolic profiling and integrated functional genomics are advancing the understanding of these intriguing biosynthetic pathways and the response of these pathways to environmental challenges. This chapter provides an overview of the basic methods, select applications, and future directions of metabolic profiling of secondary metabolism. The emphasis of the application section includes the combination of primary and secondary metabolic profiling. The future directions section describes the need for increased chromatographic and mass resolution, as well as the inevitable need and benefit of spatially and temporally resolved metabolic profiling.

Keywords

High Performance Liquid Chromatography Secondary Metabolism Peak Capacity Aristolochic Acid Triterpene Saponin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Field B, Cardon G, Traka M, Botterman J, Vancanneyt G, Mithen R (2004) Glucosinolate and amino acid biosynthesis in Arabidopsis. Plant Physiol 135: 828–839PubMedCrossRefGoogle Scholar
  2. 2.
    Keller N, Turner G, Bennett J (2005) Fungal secondary metabolism — from biochemistry to genomics. Nat Rev Microbiol 3: 937–947PubMedCrossRefGoogle Scholar
  3. 3.
    Muller WEG, Schroder HC, Wiens M, Perovic-Ottstadt S, Batel R, Muller IM (2004) Traditional and modern biomedical prospecting: Part II — The benefits: approaches for a sustainable exploitation of biodiversity (secondary metabolites and biomaterials from sponges). Evid Based Complement Altern Med 1: 133–144CrossRefGoogle Scholar
  4. 4.
    Wink ME (1999) Biochemistry of plant secondary metabolism, vol. 2, CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Dixon RA (2001) Natural products and disease resistance. Nature 411: 843–847PubMedCrossRefGoogle Scholar
  6. 6.
    Dixon RA, Sumner LW (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131: 878–885PubMedCrossRefGoogle Scholar
  7. 7.
    Dixon RA (2004) Phytoestrogens. Ann Rev Plant Biol 55: 225–261CrossRefGoogle Scholar
  8. 8.
    Goossens A, Hakkinen ST, Laakso I, Seppanen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Soderlund H, Zabeau M et al. (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. PNAS 100: 8595–8600PubMedCrossRefGoogle Scholar
  9. 9.
    Wink ME (1999) Functions of plant secondary metabolites and their exploitation in biotechnology, vol. 3, CRC Press, Boca RatonGoogle Scholar
  10. 10.
    Firn R, Jones C (2003) Natural products-a simple model to explain chemical diversity. Nat Prod Rep 20: 382–391PubMedCrossRefGoogle Scholar
  11. 11.
    Firn R, Jones C (1999) Secondary metabolism and the risks of GMOs. Nature 400: 13–14PubMedCrossRefGoogle Scholar
  12. 12.
    Firn R, Jones C (2000) The evolution of secondary metabolism — a unifying model. Mol Microbiol 37: 989–994PubMedCrossRefGoogle Scholar
  13. 13.
    Rohloff J, Bones A (2005) Volatile profiling of Arabidopsis thaliana — putative olfactory compounds in plant communication. Phytochemistry 66: 1941–1955PubMedCrossRefGoogle Scholar
  14. 14.
    Verdonk J, Ric de Vos C, Verhoeven H, Haring M, van Tunen A, Schuurink R (2003) Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62: 997–1008PubMedCrossRefGoogle Scholar
  15. 15.
    Frydman A, Weisshaus O, Bar-Peled M, Huhman DV, Sumner LW, Marin FR, Lewinsohn E, Fluhr R, Gressel J, Eyal Y (2004) Citrus fruit bitter flavors: Isolation and functional characterization of the gene encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J 40: 88–100PubMedCrossRefGoogle Scholar
  16. 16.
    D’Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12: 79R–105PubMedCrossRefGoogle Scholar
  17. 17.
    Relic B, Perret X, Estrada-Garcia M, Kopcinska J, Golinowski W, Krishnan H, Pueppke S, Broughton W (1994) Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 13: 171–178PubMedCrossRefGoogle Scholar
  18. 18.
    Oldroyd GED (2001) Dissecting symbiosis: developments in Nod factor signal transduction. Ann Bot 87: 709–718CrossRefGoogle Scholar
  19. 19.
    Deavours BE, Dixon RA (2005) Metabolic engineering of isoflavonoid biosynthesis in Alfalfa. Plant Physiol 138: 2245–2259PubMedCrossRefGoogle Scholar
  20. 20.
    Aerts RJ, Barry TN, McNabb WC (1999) Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agriculture Ecosystems & Environment 75: 1–12CrossRefGoogle Scholar
  21. 21.
    Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA, Joshi SS, Pruess HG (2000) Free radicals and grape seed proanthocyanidn extract: importance in human health and disease prevention. Toxicology 148: 187–197PubMedCrossRefGoogle Scholar
  22. 22.
    Setchell KDR, Cassidy A (1999) Dietary isoflavones: Biological effects and relevance to human health. J Nutrition 129: 758S–767SGoogle Scholar
  23. 23.
    MerzDemlow BE, Duncan AM, Wangen KE, Xu X, Carr TP, Phipps WR, Kurzer MS (2000) Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal women. Am J Clin Nutr 71: 1462–1469Google Scholar
  24. 24.
    Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79: 727–747PubMedGoogle Scholar
  25. 25.
    Gidley M (2004) Naturally functional foods — challenges and opportunities. Asia Pac J Clin Nutr 13: S31Google Scholar
  26. 26.
    Grabley S, Thiericke R (2000) Drug Discovery from Nature, 366, Springer-Verlag, New YorkGoogle Scholar
  27. 27.
    Rowinsky EK, Donehower RC (1995) Paclitaxel (Taxol). N Engl J Med 332: 1004–1014PubMedCrossRefGoogle Scholar
  28. 28.
    Khayat D, Antoine E, Coeffic D (2000) Taxol in the management of cancers of the breast and the ovary. Cancer Invest 18: 242–260PubMedGoogle Scholar
  29. 29.
    Sriram D, Rao V, Chandrasekhara K, Yogeeswari P (2004) Progress in the research of artemisinin and its analogues as antimalarials: an update. Nat Prod Res 18: 503–527PubMedCrossRefGoogle Scholar
  30. 30.
    Price R (2000) Artemisinin drugs: novel antimalarial agents. Expert Opin Investig Drugs 9: 1815–1827PubMedCrossRefGoogle Scholar
  31. 31.
    Jung M, Lee K, Kim H, Park M (2004) Recent advances in artemisinin and its derivatives as antimalarial and antitumor agents. Curr Med Chem 11: 1265–1284PubMedGoogle Scholar
  32. 32.
    Botta B, Vitali A, Menendez P, Misiti D, Delle Monache G (2005) Prenylated flavonoids: pharmacology and biotechnology. Curr Med Chem 12: 717–739PubMedCrossRefGoogle Scholar
  33. 33.
    Stevens J, Page J (2004) Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65: 1317–1330PubMedCrossRefGoogle Scholar
  34. 34.
    Cos P, De Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck A (2003) Phytoestrogens: recent developments. Planta Med 69: 589–599PubMedCrossRefGoogle Scholar
  35. 35.
    Sumner L, Mendes P, Dixon R (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62: 817–836PubMedCrossRefGoogle Scholar
  36. 36.
    Kopka J, Fernie A, Weckwerth W, Gibon Y, Stitt M (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol 5: 109PubMedCrossRefGoogle Scholar
  37. 37.
    Trethewey R (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7: 196–201PubMedCrossRefGoogle Scholar
  38. 38.
    Lange BM, Ketchum REB, Croteau RB (2001) Isoprenoid biosynthesis. Metabolite profiling of peppermint oil gland secretory cells and application to herbicide target analysis. Plant Physiol 127: 305–314PubMedCrossRefGoogle Scholar
  39. 39.
    Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56: 323–336PubMedCrossRefGoogle Scholar
  40. 40.
    Huhman D, Sumner L (2002) Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59: 347–360PubMedCrossRefGoogle Scholar
  41. 41.
    Achnine L, Huhman D, Farag M, Sumner L, Blount J, Dixon R (2005) Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant J 41: 875–887PubMedCrossRefGoogle Scholar
  42. 42.
    Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H et al. (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280: 25590–25595PubMedCrossRefGoogle Scholar
  43. 43.
    Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2: 488–494PubMedCrossRefGoogle Scholar
  44. 44.
    Sato S, Soga T, Nishioka T, Tomita M (2004) Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J 40: 151–163PubMedCrossRefGoogle Scholar
  45. 45.
    Mesnard F, Ratcliffe R (2005) NMR analysis of plant nitrogen metabolism. Photosynth Res 83: 163–180PubMedCrossRefGoogle Scholar
  46. 46.
    Wolfender J, Queiroz E, Hostettmann K (2005) Phytochemistry in the microgram domain — a LC-NMR perspective. Magn Reson Chem 43: 697–709PubMedCrossRefGoogle Scholar
  47. 47.
    Zanolari B, Wolfender J, Guilet D, Marston A, Queiroz E, Paulo M, Hostettmann K (2003) On-line identification of tropane alkaloids from Erythroxylum vacciniifolium by liquid chromatography-UV detection-multiple mass spectrometry and liquid chromatographynuclear magnetic resonance spectrometry. J Chromatogr A 1020: 75–89PubMedCrossRefGoogle Scholar
  48. 48.
    Wolfender J, Ndjoko K, Hostettmann K (2003) Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful combination for the on-line structural investigation of plant metabolites. J Chromatogr A 1000: 437–455PubMedCrossRefGoogle Scholar
  49. 49.
    Exarchou V, Krucker M, van Beek T, Vervoort J, Gerothanassis I, Albert K (2005) LCNMR coupling technology: recent advancements and applications in natural products analysis. Magn Reson Chem 43: 681–687PubMedCrossRefGoogle Scholar
  50. 50.
    Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136: 4159–4168PubMedCrossRefGoogle Scholar
  51. 51.
    Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant fuctional genomics. Nat Biotechnol 18: 1142–1161CrossRefGoogle Scholar
  52. 52.
    Steinhauser D, Usadel B, Luedemann A, Thimm O, Kopka J (2004) CSB.DB: a comprehensive systems-biology database. Bioinformatics 20: 3647–3651PubMedCrossRefGoogle Scholar
  53. 53.
    Taylor J, King RD, Altmann T, Fiehn O (2002) Application of metabolomics to plant genotype discrimination using statistics and machine learning. Bioinformatics 18: 241S–248Google Scholar
  54. 54.
    Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. PNAS 101: 15243–15248PubMedCrossRefGoogle Scholar
  55. 55.
    Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23: 131–142PubMedCrossRefGoogle Scholar
  56. 56.
    Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13: 11–29PubMedCrossRefGoogle Scholar
  57. 57.
    Roessner-Tunali U, Urbanczyk-Wochniak E, Czechowski T, Kolbe A, Willmitzer L, Fernie AR (2003) De novo amino acid biosynthesis in potato tubers is regulated by sucrose levels. Plant Physiol 133: 683–692PubMedCrossRefGoogle Scholar
  58. 58.
    Urbanczyk-Wochniak E, Baxter C, Kolbe A, Kopka J, Sweetlove L, Fernie A (2005) Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta 221: 891–903PubMedCrossRefGoogle Scholar
  59. 59.
    Urbanczyk-Wochniak E, Fernie AR (2005) Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. J Exp Bot 56: 309–321PubMedCrossRefGoogle Scholar
  60. 60.
    Fiehn O (2003) Metabolic networks of Cucurbita maxima phloem. Phytochem 62: 875–886CrossRefGoogle Scholar
  61. 61.
    D’Auria J, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8: 308–316PubMedCrossRefGoogle Scholar
  62. 62.
    Romeo JT (2004) Secondary metabolism in model systems, volume 38: recent advances in phytochemistry, vol. 38, Elsevier Science, San Diego, CAGoogle Scholar
  63. 63.
    Blount J, Masoud S, Sumner L, Huhman D, Dixon R (2002) Over-expression of cinnamate 4-hydroxylase leads to increased accumulation of acetosyringone in elicited tobacco cellsuspension cultures. Planta 214: 902–910PubMedCrossRefGoogle Scholar
  64. 64.
    Liu C, Huhman D, Sumner L, Dixon R (2003) Regiospecific hydroxylation of isoflavones by cytochrome p450 81E enzymes from Medicago truncatula. Plant J 36: 471–484PubMedCrossRefGoogle Scholar
  65. 65.
    Frydman A, Weisshaus O, Huhman D, Sumner L, Bar-Peled M, Lewinsohn E, Fluhr R, Gressel J, Eyal Y (2005) Metabolic engineering of plant cells for biotransformation of hesperedin into neohesperidin, a substrate for production of the low-calorie sweetener and flavor enhancer NHDC. J Agric Food Chem 53: 9708–9712PubMedCrossRefGoogle Scholar
  66. 66.
    Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H et al. (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280: 25590–25595PubMedCrossRefGoogle Scholar
  67. 67.
    Chen F, Duran AL, Blount JW, Sumner LW, Dixon RA (2003) Profiling phenolic metabolites in transgenic alfalfa modified in lignin biosynthesis. Phytochem 64: 1013–1021CrossRefGoogle Scholar
  68. 68.
    von Roepenack-Lahaye E, Degenkolb T, Zerjeski M, Franz M, Roth U, Wessjohann L, Schmidt J, Scheel D, Clemens S (2004) Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol 134: 548–559CrossRefGoogle Scholar
  69. 69.
    Hirai MY, Saito K (2004) Post-genomics approaches for the elucidation of plant adaptive mechanisms to sulphur deficiency. J Exp Bot 55: 1871–1879PubMedCrossRefGoogle Scholar
  70. 70.
    Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. PNAS 101: 10205–10210PubMedCrossRefGoogle Scholar
  71. 71.
    Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138: 1887–1896CrossRefGoogle Scholar
  72. 72.
    Suzuki H, Reddy MS, Naoumkina M, Aziz N, May GD, Huhman DV, Sumner LW, Blount JW, Mendes P, Dixon RA (2005) Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta 220: 696–707PubMedCrossRefGoogle Scholar
  73. 73.
    Sumner LW (2006) Current status and forward looking thoughts on LC/MS metabolomics, In Saito K, Dixon RA, Willmitzer L (ed.) Biotechnology in Agriculture and Forestry, vol. 57 Springer-Verlag, Berlin, 21–32Google Scholar
  74. 74.
    Huhman DV, Berhow M, Sumner LW (2005) Quantification of saponins in aerial and subterranean tissues of Medicago truncatula. J Ag Food Chem 53: 1914–1920CrossRefGoogle Scholar
  75. 75.
    Mondello L, Lewis AC, Bartle KD (2002) Multidimensional chromatography, John Wiley & Sons Ltd, Chichester, UKGoogle Scholar
  76. 76.
    Evans C, Jorgenson J (2004) Multidimensional LC-LC and LC-CE for high-resolution separations of biological molecules. Anal Bioanal Chem 378: 1952–1961PubMedCrossRefGoogle Scholar
  77. 77.
    Washburn M, Wolters D, Yates J (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19: 242–247PubMedCrossRefGoogle Scholar
  78. 78.
    Wolters D, Washburn M, Yates J (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73: 5683–5690PubMedCrossRefGoogle Scholar
  79. 79.
    Welthagen W, Shellie RA, Spranger J, Ristow M, Zimmermannn R, Fiehn O (2005) Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC x GC-TOF) for high resolution metabolomics: biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice. Metabolomics 1: 65–73CrossRefGoogle Scholar
  80. 80.
    Aziz N, Paiva NL, May GD, Dixon RA (2005) Transcriptome analysis of alfalfa glandular trichomes. Planta 221: 28–38PubMedCrossRefGoogle Scholar
  81. 81.
    Asano T, Masumura T, Kusano H, Kurita S, Shimada H, Kadowaki KI (2002) Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. Plant J 32: 401–408PubMedCrossRefGoogle Scholar
  82. 82.
    Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells of vascular tissues of maize. Plant Cell 15: 583–596PubMedCrossRefGoogle Scholar
  83. 83.
    Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302: 1956–1960PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2007

Authors and Affiliations

  • Lloyd W. Sumner
    • 1
  • David V. Huhman
    • 1
  • Ewa Urbanczyk-Wochniak
    • 1
  • Zhentian Lei
    • 1
  1. 1.Plant Biology DivisionThe Samuel Roberts Noble FoundationArdmoreUSA

Personalised recommendations