Advertisement

Methods, applications and concepts of metabolite profiling: Primary metabolism

  • Dirk Steinhauser
  • Joachim Kopka
Part of the Experientia Supplementum book series (EXS, volume 97)

Abstract

In the 1990s the concept of a comprehensive analysis of the metabolic complement in biological systems, termed metabolomics or alternately metabonomics, was established as the last of four cornerstones for phenotypic studies in the post-genomic era. With genomic, transcriptomic, and proteomic technologies in place and metabolomic phenotyping under rapid development all necessary tools appear to be available today for a fully functional assessment of biological phenomena at all major system levels of life. This chapter attempts to describe and discuss crucial steps of establishing and maintaining a gas chromatography/electron impact ionization/mass spectrometry (GC-EI-MS)-based metabolite profiling platform. GC-EI-MS can be perceived as the first and exemplary profiling technology aimed at simultaneous and non-biased analysis of primary metabolites from biological samples. The potential and constraints of this profiling technology are among the best understood. Most problems are solved as well as pitfalls identified. Thus GC-EI-MS serves as an ideal example for students and scientists who intend to enter the field of metabolomics. This chapter will be biased towards GC-EI-MS analyses but aims at discussing general topics, such as experimental design, metabolite identification, quantification and data mining.

Keywords

Metabolite Profile Mass Fragment Primary Metabolism Detector Reading Isoascorbic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (‘metabolome’) analysis. J Bacteriol 180: 5109–5116PubMedGoogle Scholar
  2. 2.
    Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16: 373–378PubMedCrossRefGoogle Scholar
  3. 3.
    Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29: 1181–1189PubMedCrossRefGoogle Scholar
  4. 4.
    Stoughton RB, Friend SH (2005) Innovation — How molecular profiling could revolutionize drug discovery. Nat Rev Drug Dis 4: 345–350CrossRefGoogle Scholar
  5. 5.
    Trethewey RN, Krotzky AJ, Willmitzer L (1999) Metabolic profiling: a Rosetta stone for genomics? Curr Opin Plant Biol 2: 83–85PubMedCrossRefGoogle Scholar
  6. 6.
    Fiehn O (2002) Metabolomics — the link between genotypes and phenotypes. Plant Mol Biol 48: 155–171PubMedCrossRefGoogle Scholar
  7. 7.
    Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochem 62: 817–836CrossRefGoogle Scholar
  8. 8.
    Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5: 763–769PubMedCrossRefGoogle Scholar
  9. 9.
    Jellum E, Helland P, Eldjarn L, Markwardt U, Marhofer J (1975) Development of a computer-assisted search for anomalous compounds (CASAC). J Chromatogr 112: 573–580PubMedCrossRefGoogle Scholar
  10. 10.
    Jellum E (1977) Profiling of human-body fluids in healthy and diseased states using gaschromatography and mass-spectrometry, with special reference to organic-acids. J Chromatrogr B 143: 427–462CrossRefGoogle Scholar
  11. 11.
    Jellum E (1979) Application of mass-spectrometry and metabolite profiling to the study of human-diseases. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 293: 13–19CrossRefGoogle Scholar
  12. 12.
    Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18: 1157–1161PubMedCrossRefGoogle Scholar
  13. 13.
    Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23: 131–142PubMedCrossRefGoogle Scholar
  14. 14.
    Kopka J, Fernie AF, Weckwerth W, Gibon Y, Stitt M (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol 5(6): 109–117PubMedCrossRefGoogle Scholar
  15. 15.
    Erban A, Schauer N, Fernie AR, Kopka J (2006) Non-supervised construction and application of mass spectral and retention time index libraries from time-of-flight GC-MS metabolite profiles. In: W Weckwerth (ed.): Methods in Molecular Biology Vol. 358. Humana Press Inc., Totowa, USA, pp 19–38Google Scholar
  16. 16.
    Kopka J (2006) Gas chromatography mass spectrometry, Chapter 1.1. In: K Saito, R Dixon, L Willmitzer (eds): Plant Metabolomics (Biotechnology in Agriculture and Forestry Vol. 57), Springer-Verlag, Heidelberg, pp 3–20CrossRefGoogle Scholar
  17. 17.
    Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136: 4159–4168PubMedCrossRefGoogle Scholar
  18. 18.
    Weckwerth W, Loureiro ME, Wenzel K, Fiehn O (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proc Natl Acad Sci USA 18: 7809–7814CrossRefGoogle Scholar
  19. 19.
    Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB et al. (2005) Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci USA 102: 14458–14462PubMedCrossRefGoogle Scholar
  20. 20.
    Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13: 11–29PubMedCrossRefGoogle Scholar
  21. 21.
    Junker BH, Wuttke R, Tiessen A, Geigenberger P, Sonnewald U, Willmitzer L, Fernie AR (2004) Temporally regulated expression of a yeast invertase in potato tubers allows dissection of the complex metabolic phenotype obtained following its constitutive expression. Plant Mol Biol 56: 91–110PubMedCrossRefGoogle Scholar
  22. 22.
    Birkemeyer C, Luedemann A, Wagner C, Erban A, Kopka J (2005) Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends Biotechnol 23: 28–33PubMedCrossRefGoogle Scholar
  23. 23.
    Bino RJ, deVos CHR, Lieberman M, Hall RD, Bovy A, Jonker HH, Tikunov Y, Lommen A, Moco S, Levin I (2005) The light-hyperresponsive high pigment-2(dg) mutation of tomato: alterations in the fruit metabolome. New Phytologist 166: 427–438PubMedCrossRefGoogle Scholar
  24. 24.
    Kovàts ES (1958) Gas-chromatographische charakterisierung organischer verbindungen: teil 1. retentionsindices aliphatischer halogenide, alkohole, aldehyde und ketone. Helv Chim Acta 41: 1915–1932CrossRefGoogle Scholar
  25. 25.
    Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochem 62: 887–900CrossRefGoogle Scholar
  26. 26.
    Ausloos P, Clifton CL, Lias SG, Mikaya AI, Stein SE, Tchekhovskoi DV, Spark-man OD, Zaikin V, Zhu D (1999) The critical evaluation of a comprehensive mass spectral library. J Am Soc Mass Spectrom 10: 287–299PubMedCrossRefGoogle Scholar
  27. 27.
    Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10: 770–781CrossRefGoogle Scholar
  28. 28.
    Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56: 219–243PubMedCrossRefGoogle Scholar
  29. 29.
    Gullberg J, Jonsson P, Nordström A, Sjöström M, Moritz T (2004) Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal Biochem 331: 283–295PubMedCrossRefGoogle Scholar
  30. 30.
    Duran AL, Yang J, Wang L, Sumner LW (2003) Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19: 2283–2293PubMedCrossRefGoogle Scholar
  31. 31.
    Jonsson P, Gullberg J, Nordström A, Kusano M, Kowalczyk M, Sjöström M, Moritz T (2004) A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal Chem 76: 1738–1745PubMedCrossRefGoogle Scholar
  32. 32.
    Jonsson P, Johansson AI, Gullberg J, Trygg J, Grung B, Marklund S, Sjöström M, Antti H, Moritz T (2005) High-throughput data analysis for detecting and identifying differ ences between samples in GC/MS-based metabolomic analyses. Anal Chem 77: 5635–5642PubMedCrossRefGoogle Scholar
  33. 33.
    Bino RJ, de Vos CHR, Lieberman M, Hall RD, Bovy A, Jonker HH, Tikunov Y, Lommen A, Moco S, Levin I (2005) The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome. New Phytol 166: 427–438PubMedCrossRefGoogle Scholar
  34. 34.
    Vorst O, de Vos CHR, Lommen A, Staps RV, Visser RGF, Bino RJ, Hall RD (2005) A nondirected approach to the differential analysis of multiple LC-MS derived metabolic pro-files. Metabolomics 1: 169–180CrossRefGoogle Scholar
  35. 35.
    Luedemann A, Erban A, Wagner C, Kopka J (2004) Method for analyzing metabolites. International patent application (PCT/EP2004/014450) published under the patent cooperation treaty (WO 2005/059556 A1)Google Scholar
  36. 36.
    Mashego MR, Wu L, Van Dam JC, Ras C, Vinke JL, Van Winden WA, Van Gulik WM, Heijnen JJ (2004) MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotech Bioeng 85: 620–628CrossRefGoogle Scholar
  37. 37.
    Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem 336: 164–171PubMedCrossRefGoogle Scholar
  38. 38.
    Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D, Fernie AR (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphoryla-tion diminishes during fruit development. Plant Physiol 133: 84–99PubMedCrossRefGoogle Scholar
  39. 39.
    Schauer N, Zamir D, Fernie AR (2005) Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. J Exp Bot 56: 297–307PubMedCrossRefGoogle Scholar
  40. 40.
    Kopka J (2005) Current challenges and developments in GC-MS based metabolite profiling technology. J Biotechnol 124: 312–322CrossRefGoogle Scholar
  41. 41.
    Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acid Res 32: D277–280PubMedCrossRefGoogle Scholar
  42. 42.
    Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acid Res 32: D431–433PubMedCrossRefGoogle Scholar
  43. 43.
    Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S, Arnaud M, Pick J, Rhee SY, Karp PD (2004) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acid Res 32: D438–442PubMedCrossRefGoogle Scholar
  44. 44.
    Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L et al. (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters 579: 1332–1337PubMedCrossRefGoogle Scholar
  45. 45.
    Oksman-Caldentey K-M, Inzé D, Orešič M (2004) Connecting genes to metabolites by a systems biology approach. Proc Natl Acad Sci USA 101: 9949–9950PubMedCrossRefGoogle Scholar
  46. 46.
    Trethewey RN (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7: 196–201PubMedCrossRefGoogle Scholar
  47. 47.
    Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000a) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72: 3573–3580PubMedCrossRefGoogle Scholar
  48. 48.
    Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Gibon Y, Stitt M, Willmitzer L et al. (2005) GMD@CSBDB: The Golm Metabolome Database. Bioinformatics 21: 1635–1638PubMedCrossRefGoogle Scholar
  49. 49.
    Sinha AE, Fraga CG, Prazen BJ, Synovec RE (2004a) Trilinear chemometric analysis of two dimensional comprehensive gas chromatography-time-of-flight mass spectrometry data. J Chromatogr A 1027: 269–277PubMedCrossRefGoogle Scholar
  50. 50.
    Sinha AE, Hope JL, Prazen BJ, Nilsson EJ, Jack RM, Synovec RE (2004b) Algorithm for locating analytes of interest based on mass spectral similarity in GC × GC-TOF-MS data: analysis of metabolites in human infant urine. J Chromatogr A 1058: 209–215PubMedCrossRefGoogle Scholar
  51. 51.
    Sinha AE, Prazen BJ, Synovec RE (2004c) Trends in chemometric analysis of comprehensive two-dimensional separations. Anal Bioanal Chem 378: 1948–1951PubMedCrossRefGoogle Scholar
  52. 52.
    Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Metabolic foot-printing and systems biology: The medium is the message. Nat Rev Microbiol 3: 557–565PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2007

Authors and Affiliations

  • Dirk Steinhauser
    • 1
  • Joachim Kopka
    • 1
  1. 1.Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany

Personalised recommendations