Differential display and protein quantification

  • Erich Brunner
  • Bertran Gerrits
  • Mike Scott
  • Bernd Roschitzki
Part of the Experientia Supplementum book series (EXS, volume 97)


High-throughput quantitation of proteins is of essential importance for all systems biology approaches and provides complementary information on steady-state gene expression and perturbation-induced systems responses. This information is necessary because it is, e.g., difficult to predict protein concentrations from the level of mRNAs, since regulatory processes at the posttranscriptional level adjust protein concentrations to prevailing conditions. Despite its importance, quantitative proteomics is still a challenging task because of the high dynamic range of protein concentrations in the cell and the variation in the physical properties of proteins. In this chapter we review the current status of, and options for, protein quantification in high-throughput experiments and discuss the suitability and limitations of different existing methods.


Differential Display Stable Isotope Label ICAT Reagent Deep Purple ICAT Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4(12): 3665–3685PubMedCrossRefGoogle Scholar
  2. 2.
    Cleveland DW, Fischer SG, Kirschner MW, Laemmli UK (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem 252(3): 1102–1106PubMedGoogle Scholar
  3. 3.
    Westermeier RN, Naven T (2002) Proteomics in Practice. Wiley-VCH, FreiburgGoogle Scholar
  4. 4.
    Steinberg TH, Haugland RP, Singer VL (1996) Applications of SYPRO orange and SYPRO red protein gel stains. Anal Biochem 239(2): 238–245PubMedCrossRefGoogle Scholar
  5. 5.
    Schulenberg B, Goodman TN, Aggeler R, Capaldi RA, Patton WF (2004) Characterization of dynamic and steady-state protein phosphorylation using a fluorescent phosphoprotein gel stain and mass spectrometry. Electrophoresis 25(15): 2526–2532PubMedCrossRefGoogle Scholar
  6. 6.
    Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA 97(17): 9390–9395PubMedCrossRefGoogle Scholar
  7. 7.
    Zhou S, Bailey MJ, Dunn MJ, Preedy VR, Emery PW (2005) A quantitative investigation into the losses of proteins at different stages of a two-dimensional gel electrophoresis procedure. Proteomics 5(11): 2739–2747PubMedCrossRefGoogle Scholar
  8. 8.
    Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382(3): 669–678PubMedCrossRefGoogle Scholar
  9. 9.
    Righetti PG, Castagna A, Herbert B, Reymond F, Rossier JS (2003) Prefractionation techniques in proteome analysis. Proteomics 3(8): 1397–1407PubMedCrossRefGoogle Scholar
  10. 10.
    Berkelman TS, Stenstedt T (2002) 2-D electrophoresis using immobilized pH gradients: Principles and methods, AB edn: Amersham BiosciencesGoogle Scholar
  11. 11.
    Jiang L, He L, Fountoulakis M (2004) Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 1023(2): 317–320PubMedCrossRefGoogle Scholar
  12. 12.
    Hancock RE, Nikaido H (1978) Outer membranes of gram-negative bacteria. XIX. Isolation from Pseudomonas aeruginosa PAO1 and use in reconstitution and definition of the permeability barrier. J Bacteriol 136(1): 381–390PubMedGoogle Scholar
  13. 13.
    Riedel K, Arevalo-Ferro C, Reil G, Gorg A, Lottspeich F, Eberl L (2003) Analysis of the quorum-sensing regulon of the opportunistic pathogen Burkholderia cepacia H111 by proteomics. Electrophoresis 24(4): 740–750PubMedCrossRefGoogle Scholar
  14. 14.
    Manza LL, Stamer SL, Ham AJ, Codreanu SG, Liebler DC (2005) Sample preparation and digestion for proteomic analyses using spin filters. Proteomics 5(7): 1742–1745PubMedCrossRefGoogle Scholar
  15. 15.
    Yao R, Li J (2003) Towards global analysis of mosquito chorion proteins through sequential extraction, two-dimensional electrophoresis and mass spectrometry. Proteomics 3(10): 2036–2043PubMedCrossRefGoogle Scholar
  16. 16.
    Peters TJ (1977) Application of analytical subcellular fractionation techniques and tissue enzymic analysis to the study of human pathology. Clin Sci Mol Med 53(6): 505–511PubMedGoogle Scholar
  17. 17.
    Scott TM (2005) Success rate of spot IDs in a 2D dros gel. In: FGCZ. Unpublished ResultsGoogle Scholar
  18. 18.
    Hedberg JJ, Bjerneld EJ, Cetinkaya S, Goscinski J, Grigorescu I, Haid D, Laurin Y, Bjellqvist B (2005) A simplified 2-D electrophoresis protocol with the aid of an organic disulfide. Proteomics 5(12): 3088–3096PubMedCrossRefGoogle Scholar
  19. 19.
    Hoving S, Gerrits B, Voshol H, Muller D, Roberts RC, van Oostrum J (2002) Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics 2(2): 127–134PubMedCrossRefGoogle Scholar
  20. 20.
    Pennington K, McGregor E, Beasley CL, Everall I, Cotter D, Dunn MJ (2004) Optimization of the first dimension for separation by two-dimensional gel electrophoresis of basic proteins from human brain tissue. Proteomics 4(1): 27–30PubMedCrossRefGoogle Scholar
  21. 21.
    Herbert BR, Molloy MP, Gooley AA, Walsh BJ, Bryson WG, Williams KL (1998) Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis 19(5): 845–851PubMedCrossRefGoogle Scholar
  22. 22.
    Barry RC, Alsaker BL, Robison-Cox JF, Dratz EA (2003) Quantitative evaluation of sample application methods for semipreparative separations of basic proteins by two-dimensional gel electrophoresis. Electrophoresis 24(19–20): 3390–3404PubMedCrossRefGoogle Scholar
  23. 23.
    Gorg A, Boguth G, Obermaier C, Weiss W (1998) Two-dimensional electrophoresis of proteins in an immobilized pH 4-12 gradient. Electrophoresis 19(8–9): 1516–1519PubMedCrossRefGoogle Scholar
  24. 24.
    Chevallet M, Santoni V, Poinas A, Rouquie D, Fuchs A, Kieffer S, Rossignol M, Lunardi J, Garin J, Rabilloud T (1998) New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19(11): 1901–1909PubMedCrossRefGoogle Scholar
  25. 25.
    Luche S, Santoni V, Rabilloud T (2003) Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3(3): 249–253PubMedCrossRefGoogle Scholar
  26. 26.
    Twine SM, Mykytczuk NC, Petit M, Tremblay TL, Conlan JW, Kelly JF (2005) Francisella tularensis proteome: low levels of ASB-14 facilitate the visualization of membrane proteins in total protein extracts. J Proteome Res 4(5): 1848–1854PubMedCrossRefGoogle Scholar
  27. 27.
    Bai F, Liu S, Witzmann FA (2005) A ‘de-streaking’ method for two-dimensional electrophoresis using the reducing agent tris(2-carboxyethyl)-phosphine hydrochloride and alkylating agent vinylpyridine. Proteomics 5(8): 2043–2047PubMedCrossRefGoogle Scholar
  28. 28.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680–685PubMedCrossRefGoogle Scholar
  29. 29.
    Fountoulakis M, Juranville JF, Roder D, Evers S, Berndt P, Langen H (1998) Reference map of the low molecular mass proteins of Haemophilus influenzae. Electrophoresis 19(10): 1819–1827PubMedCrossRefGoogle Scholar
  30. 30.
    Haebel S, Albrecht T, Sparbier K, Walden P, Korner R, Steup M (1998) Electrophoresis-related protein modification: alkylation of carboxy residues revealed by mass spectrometry. Electrophoresis 19(5): 679–686PubMedCrossRefGoogle Scholar
  31. 31.
    Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25(9): 1327–1333PubMedCrossRefGoogle Scholar
  32. 32.
    Lamanda A, Zahn A, Roder D, Langen H (2004) Improved Ruthenium II tris (bathophenantroline disulfonate) staining and destaining protocol for a better signal-to-background ratio and improved baseline resolution. Proteomics 4(3): 599–608PubMedCrossRefGoogle Scholar
  33. 33.
    Mackintosh JA, Choi HY, Bae SH, Veal DA, Bell PJ, Ferrari BC, Van Dyk DD, Verrills NM, Paik YK, Karuso P (2003) A fluorescent natural product for ultra sensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis. Proteomics 3(12): 2273–2288PubMedCrossRefGoogle Scholar
  34. 34.
    Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68(5): 850–858PubMedCrossRefGoogle Scholar
  35. 35.
    Berggren K, Chernokalskaya E, Steinberg TH, Kemper C, Lopez MF, Diwu Z, Haugland RP, Patton WF (2000) Background-free, high sensitivity staining of proteins in one-and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 21(12): 2509–2521PubMedCrossRefGoogle Scholar
  36. 36.
    Scott TM (2004) RuBP Lamanda Stain Optimization. 2004: Personal Communication. Unpublished ResultsGoogle Scholar
  37. 37.
    Smejkal GB, Robinson MH, Lazarev A (2004) Comparison of fluorescent stains: relative photostability and differential staining of proteins in two-dimensional gels. Electrophoresis 25(15): 2511–2519PubMedCrossRefGoogle Scholar
  38. 38.
    Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1(3): 377–396PubMedCrossRefGoogle Scholar
  39. 39.
    Browne TR, Van Langenhove A, Costello CE, Biemann K, Greenblatt DJ (1981) Kinetic equivalence of stable-isotope-labeled and unlabeled phenytoin. Clin Pharmacol Ther 29(4): 511–515PubMedCrossRefGoogle Scholar
  40. 40.
    Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA 96(12): 6591–6596PubMedCrossRefGoogle Scholar
  41. 41.
    Lahm HW, Langen H (2000) Mass spectrometry: a tool for the identification of proteins separated by gels. Electrophoresis 21(11): 2105–2114PubMedCrossRefGoogle Scholar
  42. 42.
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5): 376–386PubMedCrossRefGoogle Scholar
  43. 43.
    Gruhler A, Schulze WX, Matthiesen R, Mann M, Jensen ON (2005) Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol Cell Proteomics 4(11): 1697–1709PubMedCrossRefGoogle Scholar
  44. 44.
    Krijgsveld J, Ketting RF, Mahmoudi T, Johansen J, Artal-Sanz M, Verrijzer CP, Plasterk RH, Heck AJ (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21(8): 927–931PubMedCrossRefGoogle Scholar
  45. 45.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10): 994–999PubMedCrossRefGoogle Scholar
  46. 46.
    Regnier FE, Riggs L, Zhang R, Xiong L, Liu P, Chakraborty A, Seeley E, Sioma C, Thompson RA (2002) Comparative proteomics based on stable isotope labeling and affinity selection. J Mass Spectrom 37(2): 133–145PubMedCrossRefGoogle Scholar
  47. 47.
    Hansen KC, Schmitt-Ulms G, Chalkley RJ, Hirsch J, Baldwin MA, Burlingame AL (2003) Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotopecoded affinity tag and multidimensional chromatography. Mol Cell Proteomics 2: 299–314PubMedGoogle Scholar
  48. 48.
    Li J, Steen H, Gygi SP (2003) Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents: the yeast salinity stress response. Mol Cell Proteomics 2(11): 1198–1204PubMedCrossRefGoogle Scholar
  49. 49.
    Lu Y, Bottari P, Turecek F, Aebersold R, Gelb MH (2004) Absolute quantification of specific proteins in complex mixtures using visible isotope-coded affinity tags. Anal Chem 76(14): 4104–4111PubMedCrossRefGoogle Scholar
  50. 50.
    Ranish JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, Eng J, Aebersold R (2003) The study of macromolecular complexes by quantitative proteomics. Nat Genet 33(3): 349–355PubMedCrossRefGoogle Scholar
  51. 51.
    Smolka M, Zhou H, Aebersold R (2002) Quantitative protein profiling using two-dimensional gel electrophoresis, isotope-coded affinity tag labeling, and mass spectrometry. Mol Cell Proteomics 1(1): 19–29PubMedCrossRefGoogle Scholar
  52. 52.
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S et al. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12): 1154–1169PubMedCrossRefGoogle Scholar
  53. 53.
    Unwin RD, Pierce A, Watson RB, Sternberg DW, Whetton AD (2005) Quantitative proteomic analysis using isobaric protein tags enables rapid comparison of changes in transcript and protein levels in transformed cells. Mol Cell Proteomics 4(7): 924–935PubMedCrossRefGoogle Scholar
  54. 54.
    DeSouza L, Diehl G, Rodrigues MJ, Guo J, Romaschin AD, Colgan TJ, Siu KW (2005) Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res 4(2): 377–386PubMedCrossRefGoogle Scholar
  55. 55.
    Choe LH, Aggarwal K, Franck Z, Lee KH (2005) A comparison of the consistency of proteome quantitation using two-dimensional electrophoresis and shotgun isobaric tagging in Escherichia coli cells. Electrophoresis 26(12): 2437–2449PubMedCrossRefGoogle Scholar
  56. 56.
    Gaskell SJ, Haroldsen PE, Reilly MH (1988) Collisionally activated decomposition of modified peptides using a tandem hybrid instrument. Biomed Environ Mass Spectrom 16(1–12): 31–33PubMedCrossRefGoogle Scholar
  57. 57.
    Desiderio DM, Kai M (1983) Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomed Mass Spectrom 10(8): 471–479PubMedCrossRefGoogle Scholar
  58. 58.
    Kraut J (1977) Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem 46: 331–358PubMedCrossRefGoogle Scholar
  59. 59.
    Schulze WX, Mann M (2004) A novel proteomic screen for peptide-protein interactions. J Biol Chem 279(11): 10756–10764PubMedCrossRefGoogle Scholar
  60. 60.
    Heller M, Mattou H, Menzel C, Yao X (2003) Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers. J Am Soc Mass Spectrom 14(7): 704–718PubMedCrossRefGoogle Scholar
  61. 61.
    Hicks WA, Halligan BD, Slyper RY, Twigger SN, Greene AS, Olivier M (2005) Simultaneous quantification and identification using 18O labeling with an ion trap mass spectrometer and the analysis software application ‘ZoomQuant’. J Am Soc Mass Spectrom 16(6): 916–925PubMedCrossRefGoogle Scholar
  62. 62.
    Rao KC, Carruth RT, Miyagi M (2005) Proteolytic 18O labeling by peptidyl-Lys metalloendopeptidase for comparative proteomics. J Proteome Res 4(2): 507–514PubMedCrossRefGoogle Scholar
  63. 63.
    Sun G, Anderson VE (2005) A strategy for distinguishing modified peptides based on postdigestion 18O labeling and mass spectrometry. Rapid Commun Mass Spectrom 19(19): 2849–2856PubMedCrossRefGoogle Scholar
  64. 64.
    Hood BL, Lucas DA, Kim G, Chan KC, Blonder J, Issaq HJ, Veenstra TD, Conrads TP, Pollet I, Karsan A (2005) Quantitative analysis of the low molecular weight serum proteome using 18O stable isotope labeling in a lung tumor xenograft mouse model. J Am Soc Mass Spectrom 16(8): 1221–1230PubMedCrossRefGoogle Scholar
  65. 65.
    Bonenfant D, Schmelzle T, Jacinto E, Crespo JL, Mini T, Hall MN, Jenoe P (2003) Quantitation of changes in protein phosphorylation: a simple method based on stable isotope labeling and mass spectrometry. Proc Natl Acad Sci USA 100(3): 880–885PubMedCrossRefGoogle Scholar
  66. 66.
    Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154(1): 250–254PubMedCrossRefGoogle Scholar
  67. 67.
    Purves RW, Gabryelski W, Li L (1998) Investigation of the quantitative capabilities of an electrospray ionization ion trap linear time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 12(11): 695–700CrossRefGoogle Scholar
  68. 68.
    Voyksner RD, Lee H (1999) Investigating the use of an octupole ion guide for ion storage and high-pass mass filtering to improve the quantitative performance of electrospray ion trap mass spectrometry. Rapid Commun Mass Spectrom 13(14): 1427–1437PubMedCrossRefGoogle Scholar
  69. 69.
    Muller C, Schafer P, Stortzel M, Vogt S, Weinmann W (2002) Ion suppression effects in liquid chromatography-electrospray-ionisation transport-region collision induced dissociation mass spectrometry with different serum extraction methods for systematic toxicological analysis with mass spectra libraries. J Chromatogr B Analy t Technol Biomed Life Sci 773(1): 47–52CrossRefGoogle Scholar
  70. 70.
    Rappsilber J, Ryder U, Lamond AI, Mann M (2002) Large-scale proteomic analysis of the human splicesome. Genome Res 12(8): 1231–1245PubMedCrossRefGoogle Scholar
  71. 71.
    Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4(9): 1265–1272PubMedCrossRefGoogle Scholar
  72. 72.
    Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100(12): 6940–6945PubMedCrossRefGoogle Scholar
  73. 73.
    Silva JC, Gorenstein MV, Li G-Z, Vissers JPC, Geromanos SJ (2006) Absolute quantification of proteins by LCMSE: A virtue of parallel ms acquisition. Mol Cell Proteomics 5(1): 144–156PubMedCrossRefGoogle Scholar
  74. 74.
    Wang WX, Zhou HH, Lin H, Roy S, Shaler TA, Hill LR, Norton S, Kumar P, Anderle M, Becker CH (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chemistry 75(18): 4818–4826CrossRefGoogle Scholar
  75. 75.
    Han DK, Eng J, Zhou H, Aebersold R (2001) Quantitative profiling of differentiationinduced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19(10): 946–951PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2007

Authors and Affiliations

  • Erich Brunner
    • 1
  • Bertran Gerrits
    • 1
  • Mike Scott
    • 1
  • Bernd Roschitzki
    • 1
  1. 1.Functional Genomics Center ZürichZürichSwitzerland

Personalised recommendations