Regulatory small RNAs in plants

  • Cameron Johnson
  • Venkatesan Sundaresan
Part of the Experientia Supplementum book series (EXS, volume 97)


The discovery of microRNAs in the last decade altered the paradigm that protein coding genes are the only significant components for the regulation of gene networks. Within a short period of time small RNA systems within regulatory networks of eukaryotic cells have been uncovered that will ultimately change the way we infer gene regulation networks from transcriptional profiling data. Small RNAs are involved in the regulation of global activities of genic regions via chromatin states, as inhibitors of’ selfish’ sequences (transposons, retroviruses), in establishment or maintenance of tissue/organ identity, and as modulators of the activity of transcription factor as well as ‘house keeping’ genes. With this chapter we provide an overview of the central aspects of small RNA function in plants and the features that distinguish the different small RNAs. We furthermore highlight the use of computational prediction methods for identification of plant miRNAs/precursors and their targets and provide examples for the experimental validation of small RNA candidates that could represent trans-regulators of downstream genes. Lastly, the emerging concepts of small RNAs as modulators of gene expression constituting systems networks within different cells in a multicellular organism are discussed.


Small RNAs miRNA Gene miRNA Sequence Target Transcript miRNA Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tang G (2005) siRNA and miRNA: an insight into RISCs. TBS 30(2): 106–114Google Scholar
  2. 2.
    Herr AJ (2005) Pathways through the small RNA world of plants. FEBS 579: 5879–5888CrossRefGoogle Scholar
  3. 3.
    Preall JB, Sontheimer EJ (2005) RNAi: RISC gets loaded. Cell 123(4): 543–545PubMedCrossRefGoogle Scholar
  4. 4.
    Hammond SM (2005) Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 579(26): 5822–5829PubMedCrossRefGoogle Scholar
  5. 5.
    Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6(2): 127–138PubMedCrossRefGoogle Scholar
  6. 6.
    Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16(21): 2733–2742PubMedCrossRefGoogle Scholar
  7. 7.
    Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15(16): 1494–1500PubMedCrossRefGoogle Scholar
  8. 8.
    Golden TA, Schauer SE, Lang JD, Pien S, Mushegian AR, Grossniklaus U, Meinke DW, Ray A (2002) SHORT INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a Dicer homolog, is a maternal effect gene required for embryo development in Arabidopsis. Plant Physiol 130(2): 808–822PubMedCrossRefGoogle Scholar
  9. 9.
    Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16(13): 1616–1626PubMedCrossRefGoogle Scholar
  10. 10.
    Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4(2): 205–217PubMedCrossRefGoogle Scholar
  11. 11.
    Finnegan EJ, Margis R, Waterhouse PM (2003) Posttranscriptional gene silencing is not compromised in the Arabidopsis CARPEL FACTORY (DICER-LIKE1) mutant, a homolog of Dicer-1 from Drosophila. Curr Biol 13(3): 236–240PubMedCrossRefGoogle Scholar
  12. 12.
    Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2(5): E104PubMedCrossRefGoogle Scholar
  13. 13.
    Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19(3): 421–428PubMedCrossRefGoogle Scholar
  14. 14.
    Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and-independent cell-to-cell movement of RNA silencing. EMBO J 22(17): 4523–453315.PubMedCrossRefGoogle Scholar
  15. 15.
    Schwach F, Vaistij FE, Jones L, Baulcombe DC (2005) An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiol 138(4): 1842–1852PubMedCrossRefGoogle Scholar
  16. 16.
    Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107(4): 465–476PubMedCrossRefGoogle Scholar
  17. 17.
    Zilberman D, Henikoff S (2005) Epigenetic inheritance in Arabidopsis: selective silence. Curr Opin Genet Dev 15(5): 557–562PubMedCrossRefGoogle Scholar
  18. 18.
    Ying SY, Lin SL (2004) Intron-derived microRNAs — fine tuning of gene functions. Gene 342: 25–28PubMedCrossRefGoogle Scholar
  19. 19.
    Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2): 207–221PubMedCrossRefGoogle Scholar
  20. 20.
    Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543): 858–862PubMedCrossRefGoogle Scholar
  21. 21.
    Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ (2005) Elucidation of the small RNA component of the transcriptome. Science 309(5740): 1567–1569PubMedCrossRefGoogle Scholar
  22. 22.
    Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5(2): 337–350PubMedCrossRefGoogle Scholar
  23. 23.
    Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1): 21–24PubMedCrossRefGoogle Scholar
  24. 24.
    Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299(5612): 1540PubMedCrossRefGoogle Scholar
  25. 25.
    Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17(8): 991–1008PubMedCrossRefGoogle Scholar
  26. 26.
    Lai EC, Tomancak P, Williams RW, Rubin GM (2003) Computational identification of Drosophila microRNA genes. Genome Biol 4(7): R42PubMedCrossRefGoogle Scholar
  27. 27.
    Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G, Kim J (2003) Computational and experimental identifiation of C. elegans microRNAs. Mol Cell 11(5): 1253–1263PubMedCrossRefGoogle Scholar
  28. 28.
    Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101(31): 11511–11516PubMedCrossRefGoogle Scholar
  29. 29.
    Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5(9): R65PubMedCrossRefGoogle Scholar
  30. 30.
    Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4): 513–520PubMedCrossRefGoogle Scholar
  31. 31.
    Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Research 15: 78–91PubMedCrossRefGoogle Scholar
  32. 32.
    Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7): 787–798PubMedCrossRefGoogle Scholar
  33. 33.
    Burgler C, Macdonald PM (2005) Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method. BMC Genomics 6(1): 88PubMedCrossRefGoogle Scholar
  34. 34.
    Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428(6982): 485–486PubMedCrossRefGoogle Scholar
  35. 35.
    Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17(6): 1658–167336.PubMedCrossRefGoogle Scholar
  36. 36.
    Mallory AC, Reinhart BJ, Bartel D, Vance VB, Bowman LH (2002) A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and micro-RNAs in tobacco. Proc Natl Acad Sci USA 99(23): 15228–15233PubMedCrossRefGoogle Scholar
  37. 37.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20): e179PubMedCrossRefGoogle Scholar
  38. 38.
    Raymond CK, Roberts BS, Garret-Engele P, Lim LP, Johnson JM (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11: 1737–1744PubMedCrossRefGoogle Scholar
  39. 39.
    Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39(4): 519–525PubMedCrossRefGoogle Scholar
  40. 40.
    Lu DPP, Read RLL, Humphreys DTT, Battah FMM, Martin DIK, Rasko JEJ (2005) PCR-based expression analysis and identification of microRNAs. J RNAi Gene Silencing 1(1): 44–49Google Scholar
  41. 41.
    Williams L, Carles CC, Osmont KS, Fletcher JC (2005) A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA 102(27): 9703–9708PubMedCrossRefGoogle Scholar
  42. 42.
    Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nature 5: 396–400Google Scholar
  43. 43.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1): 15–20PubMedCrossRefGoogle Scholar
  44. 44.
    Lim LP, Lau NC, Garret-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769–773PubMedCrossRefGoogle Scholar
  45. 45.
    Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13(20): 1768–1774PubMedCrossRefGoogle Scholar
  46. 46.
    Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166gand its AtHDZIP target genes. Dev 132(16): 3657–3668CrossRefGoogle Scholar
  47. 47.
    Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6): 787–799PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2007

Authors and Affiliations

  • Cameron Johnson
    • 1
  • Venkatesan Sundaresan
    • 1
  1. 1.Plant Biology and Plant SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations