Case studies for transcriptional profiling

  • Lars Hennig
  • Claudia Köhler
Part of the Experientia Supplementum book series (EXS, volume 97)


DNA microarrays are frequently used to study transcriptome regulation in a wide variety of organisms. Although they are an invaluable tool for the acquisition of large scale dataset in plant systems biology, a number of surprising results and unanticipated complications are often encountered that illustrate the limitations and potential pitfalls of this technology. In this chapter we will present examples of real world studies from two classes of microarray experiments that were designed to (i) identify target genes for transcriptional regulators and (ii) to characterize complex expression patterns to reveal unexpected dependencies within transcriptional networks.


Direct Target Gene Polycomb Group Protein Identify Target Gene Primary Target Gene Polycomb Group Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Otte AP, Kwaks TH (2003) Gene repression by polycomb group protein complexes: a distinct complex for every occasion? Curr Opin Genet Dev 13: 448–454PubMedCrossRefGoogle Scholar
  2. 2.
    Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38: 413–443PubMedCrossRefGoogle Scholar
  3. 3.
    Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36: 99–124PubMedCrossRefGoogle Scholar
  4. 4.
    Köhler C, Grossniklaus U (2002) Epigenetic inheritance of expression states in plant development: the role of polycomb group proteins. Curr Opin Cell Biol 14: 773–779PubMedCrossRefGoogle Scholar
  5. 5.
    Hsieh TF, Hakim O, Ohad N, Fischer RL (2003) From flour to flower: how polycomb group proteins influence multiple aspects of plant development. Trends Plant Sci 8: 439–445PubMedCrossRefGoogle Scholar
  6. 6.
    Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2003) The Polycombgroup protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 17: 1540–1553PubMedCrossRefGoogle Scholar
  7. 7.
    Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280: 446–450PubMedCrossRefGoogle Scholar
  8. 8.
    Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999) Mutations in FIE, a WD Polycomb group gene, allow endosperm develop ment without fertilization. Plant Cell 11: 407–416PubMedCrossRefGoogle Scholar
  9. 9.
    Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96: 296–301PubMedCrossRefGoogle Scholar
  10. 10.
    Spillane C, MacDougall C, Stock C, Köhler C, Vielle-Calzada J, Nunes SM, Grossniklaus U, Goodrich J (2000) Interaction of the Arabidopsis Polycomb group proteins FIE and MEA mediates their common phenotypes. Curr Biol 10: 1535–1538PubMedCrossRefGoogle Scholar
  11. 11.
    Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 97: 10637–10642PubMedCrossRefGoogle Scholar
  12. 12.
    Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22: 4804–4814PubMedCrossRefGoogle Scholar
  13. 13.
    Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78: 203–209PubMedCrossRefGoogle Scholar
  14. 14.
    Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495–500PubMedCrossRefGoogle Scholar
  15. 15.
    Wagner D, Sablowski RW, Meyerowitz EM (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285: 582–584PubMedCrossRefGoogle Scholar
  16. 16.
    William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci U S A 101: 1775–1780PubMedCrossRefGoogle Scholar
  17. 17.
    Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9: 3273–3297PubMedGoogle Scholar
  18. 18.
    Cho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinoso L, Hampton G, Elledge SJ, Davis RW, Lockhart DJ (2001) Transcriptional regulation and function during the human cell cycle. Nat Genet 27: 48–54PubMedGoogle Scholar
  19. 19.
    Menges M, Hennig L, Gruissem W, Murray JAH (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277: 41987–42002PubMedCrossRefGoogle Scholar
  20. 20.
    Menges M, Hennig L, Gruissem W, Murray JA (2003) Genome-wide gene expression in an Arabidopsis cell suspension. Plant Mol Biol 53: 423–442PubMedCrossRefGoogle Scholar
  21. 21.
    Menges M, Murray JAH (2002) Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J 30: 203–212PubMedCrossRefGoogle Scholar
  22. 22.
    Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington CA, Ho MH, Baid J et al. (2002) Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 18: 1593–1599PubMedCrossRefGoogle Scholar
  23. 23.
    Shedden K, Cooper S (2002) Analysis of cell-cycle-specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization. Proc Natl Acad Sci USA 99: 4379–4384PubMedCrossRefGoogle Scholar
  24. 24.
    Hennig L, Gruissem W, Grossniklaus U, Köhler C (2004) Transcriptional programs of early reproductive stages in Arabidopsis. Plant Physiol 135: 1765–1775PubMedCrossRefGoogle Scholar
  25. 25.
    Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29: 464–489PubMedCrossRefGoogle Scholar
  26. 26.
    Shirley BW (1996) Flavonoid biosynthesis-new functions for an old pathway. Trends Plant Sci 1: 377–382CrossRefGoogle Scholar
  27. 27.
    Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299: 396–399PubMedCrossRefGoogle Scholar
  28. 28.
    Matsubayashi Y (2003) Ligand-receptor pairs in plant peptide signaling. J Cell Sci 116: 3863–3870PubMedCrossRefGoogle Scholar
  29. 29.
    Marton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by EGG APPARATUS 1 of maize. Science 307: 573–576PubMedCrossRefGoogle Scholar
  30. 30.
    McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18: 455–457PubMedCrossRefGoogle Scholar
  31. 31.
    Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657PubMedCrossRefGoogle Scholar
  32. 32.
    Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C et al. (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14: 2985–2994PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2007

Authors and Affiliations

  • Lars Hennig
    • 1
  • Claudia Köhler
    • 2
  1. 1.Plant BiotechnologySwiss Federal Institute of Technology (ETH) ZürichZürichSwitzerland
  2. 2.Plant Developmental BiologySwiss Federal Institute of Technology (ETH) ZürichZürichSwitzerland

Personalised recommendations