Network analysis of systems elements

  • Daniel Schöner
  • Simon Barkow 
  • Stefan Bleuler
  • Anja Wille
  • Philip Zimmermann
  • Peter Bühlmann
  • Wilhelm Gruissem
  • Eckart Zitzler
Part of the Experientia Supplementum book series (EXS, volume 97)


A central goal of postgenomic research is to assign a function to every predicted gene. Because genes often cooperate in order to establish and regulate cellular events the examination of a gene has also included the search for at least a few interacting genes. This requires a strong hypothesis about possible interaction partners, which has often been derived from what was known about the gene or protein beforehand. Many times, though, this prior knowledge has either been completely lacking, biased towards favored concepts, or only partial due to the theoretically vast interaction space. With the advent of high-throughput technology and robotics in biological research, it has become possible to study gene function on a global scale, monitoring entire genomes and proteomes at once. These systematic approaches aim at considering all possible dependencies between genes or their products, thereby exploring the interaction space at a systems scale. This chapter provides an introduction to network analysis and illustrates the corresponding concepts on the basis of gene expression data. First, an overview of existing methods for the identification of co-regulated genes is given. Second, the issue of topology inference is discussed and as an example a specific inference method is presented. And lastly, the application of these techniques is demonstrated for the Arabidopsis thaliana isoprenoid pathway.


Network Analysis Gene Expression Data System Element Genetic Regulatory Network Isoprenoid Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Donne J (1624) Meditation XVII: Devotions Upon Emergent Occasions. McGill-Queens’s Univ. Press, MontrealGoogle Scholar
  2. 2.
    Kumar A, Snyder M (2002) Proteomics: Protein complexes take the bait. Nature 415: 123–124.PubMedCrossRefGoogle Scholar
  3. Kohane IS, Kho AT, Butte AJ (2003) Microarrays for an Integrative Genomics. MIT PressGoogle Scholar
  4. 4.
    Wit E, McClure J (2004) Statistics for Microarrays, WileyGoogle Scholar
  5. 5.
    Tayazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination of genetic network architecture. Nat Genet 22: 281–285CrossRefGoogle Scholar
  6. 6.
    Soukas A, Cohen P, Socci ND, Friedman JM (2000) Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev 14: 963–980PubMedGoogle Scholar
  7. 7.
    Eisen MB, Spellman PT, Brown PO, Botsteinl D (1998) Cluster analysis and display of genome-wide expression patterns. PNAS 95: 14863–14868PubMedCrossRefGoogle Scholar
  8. 8.
    Tamayo P, Slonin P, Mesirov J, Zho Q, Kitareewan S, Danitrovsky E, Lander ES, Golob TR (1999) Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. PNAS 96: 2907–2912PubMedCrossRefGoogle Scholar
  9. 9.
    Sharan R, Maron-Katz A, Shamir R (2003) Click and expander: A system for clustering and visualizing gene expression data. Bioinformatics 19: 1787–1799PubMedCrossRefGoogle Scholar
  10. 10.
    Hartigan JA (1972) Direct clustering of a data matrix. J Am Statistical Assoc 67: 123–129CrossRefGoogle Scholar
  11. 11.
    Kluger Y, Basri R, Chang JT, Gerstein M (2003) Spectral biclustering of microarray cancer data: Co-clustering genes and conditions. Genome Research 13,703–16. Scholar
  12. 12.
    Cheng Y, Church GM (2000) Biclustering of Gene Expression Data. pp 93–103. Scholar
  13. 13.
    Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinforrnatics 18: S136–S144Google Scholar
  14. 14.
    Murali TM, Kasif S (2003) Extracting Conserved Gene Expression Motifs from Gene Expression Data. Vol. 8, pp 77–88Google Scholar
  15. 15.
    Bergmann S, Ihmels J, Barkai N (2003) Iterative signature algorithm for the analysis of large-scale gene expression data. Phys Rev E Stat Nonlin Soft Matter Phys 67: 031902PubMedGoogle Scholar
  16. 16.
    PreliĆ A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E (2005) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22: 1122–1129CrossRefGoogle Scholar
  17. 17.
    Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1: 24–45PubMedCrossRefGoogle Scholar
  18. 18.
    Ernst J, Nau GJ, Bar-Joseph Z (2005) Clustering short time series gene expression data. Bioinformatics 21Suppl 1:i159–i168PubMedCrossRefGoogle Scholar
  19. 19.
    Luan Y, Li H (2004) Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data. Bioinformatics 20: 332–339PubMedCrossRefGoogle Scholar
  20. 20.
    Wichert S, Fokianos K, Strimmer K (2004) Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 20: 5–20PubMedCrossRefGoogle Scholar
  21. 21.
    Qian J, Dolled-Filhart M, Lin J, Yu H, Gerstein M (2001) Beyond synexpression relationships: Local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J Mol Biol 314: 1053–1066PubMedCrossRefGoogle Scholar
  22. 22.
    Bar-Joseph Z (2004) Analizing time series gene expression data. Bioinformatics 20: 2493–2503PubMedCrossRefGoogle Scholar
  23. 23.
    Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241–4257PubMedGoogle Scholar
  24. 24.
    Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N (2003) Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 34: 166–176PubMedCrossRefGoogle Scholar
  25. 25.
    Bleuler S, Zitzler E (2005) Order Preserving Clustering over Multiple Time Course Experiments, LNCS. (Springer), No 3449, pp 33–43Google Scholar
  26. 26.
    Hanisch D, Zien A, Zimmer R, Lengauer T (2002) Coclustering of biological networks and gene expression data. Bioinformatics 18: S145–S154PubMedGoogle Scholar
  27. 27.
    Speer N, Spieth C, Zell A (2004) A Memetic Co-Clustering Algorithm for Gene Expression Profiles and Biological Annotation. (IEEE), Vol 2, pp 1631–1638Google Scholar
  28. 28.
    Tanay A, Sharan R, Kupiec M, Shamir R (2004) Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genome wide data. Proc Natl Acad Sci USA 101: 2981–2986PubMedCrossRefGoogle Scholar
  29. 29.
    Friedman N, Linial M, Nachman I, Pe’er D (2000) Using bayesian networks to analyze expression data. J Comput Biol 7: 601–620PubMedCrossRefGoogle Scholar
  30. 30.
    Hartemink A, Gifford D, Jaakkola T, Young R (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. PSB01. pp 422–433Google Scholar
  31. 31.
    Cox D, Wermuth N (1993) Linear dependencies represented by chain graphs (with discussion). Statist Sci 8: 204–218Google Scholar
  32. 32.
    Cox D, Wermuth N (1996) Multivariate dependencies: Models analysis and interpretation. Chapman & Hall, LondonGoogle Scholar
  33. 33.
    Edwards D (2000) Introduction to Graphical Modelling. Springer Verlag; 2nd editionGoogle Scholar
  34. 34.
    Lauritzen S (1996) Graphical Models. Oxford University PressGoogle Scholar
  35. 35.
    Toh H, Horimoto K (2002) Inference of a genetic network by a combined approach of cluster analysis and graphical gaussian modeling. Bioinformatics 18: 287–297PubMedCrossRefGoogle Scholar
  36. 36.
    Wang J, Myklebost O, Hovig E (2003) Mgraph: Graphical models far microarray data analysis. Bioinformatics 19: 2210–2211PubMedCrossRefGoogle Scholar
  37. 37.
    Friedman N, Nachman I, Pe’er D (1999) Learning Bayesian network structure from massive datasets: The “Sparse Candidate” algorithm, UAI. pp 206–215Google Scholar
  38. 38.
    Wille A, Zimmermann P, Vranova E, Furholz A, Laule O, Bleuler S, Hennig L, Prelic A, von Rohr P, Thiele L et al. (2004) Sparse graphical gaussian modeling of the isoprenoid gene network in arabidopsis thaliana. Genome Biol 5: R92PubMedCrossRefGoogle Scholar
  39. 39.
    Magwene P, Kim J (2004) Estimating genomic coexpression networks using first-order conditional independence. Genome Biol 5: R100PubMedCrossRefGoogle Scholar
  40. 40.
    de la Fuente A, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20: 3565–3574PubMedCrossRefGoogle Scholar
  41. 41.
    Laule O, Fürholz A, Chang H, Zhu T, Wang X, Heifetz P, Gruissem W, Lange M (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871PubMedCrossRefGoogle Scholar
  42. 42.
    Bick J, Lange B (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: Unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415: 146–154PubMedCrossRefGoogle Scholar
  43. 43.
    Zimmermann P, Hennig L, Gruissem W (2005) Geneexpression analysis and network discovery using genevestigator. Trends Plant Sci 10: 1360–1385CrossRefGoogle Scholar
  44. 44.
    Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator. arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632PubMedCrossRefGoogle Scholar
  45. 45.
    Barkow S, Bleuler S, Prelic A, Zimmermann P, Zitzler E (2005) Bicat: A biclustering analysis toolbox. unpublished Google Scholar
  46. 46.
    Enright A, Ouzounis C (2001) Biolayout — an automatic graph layout algorithm for similarity visualization. Bioinformatics 17: 853–854PubMedCrossRefGoogle Scholar
  47. 47.
    Rodriguez-Concepcion M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. a metaboc milestone achieved through genomics. Plant Physiol 130:1079–1089PubMedCrossRefGoogle Scholar
  48. 48.
    Ihmels J, Levy R, Barkai N (2004) Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat Biotechnol 22: 86–92PubMedCrossRefGoogle Scholar
  49. 49.
    Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M et al. (2004) Global mapping of the yeast genetic interaction network. Science 303: 808–813PubMedCrossRefGoogle Scholar
  50. 50.
    Mewes HW, Amid C, Arnold R, Frishman D, Goldener U, Mannhaupt G, Musterkotter M, Pagel P, Strack N, Stumpflen V et al. (2004) MIPS: Analysis and annotation of proteins from whole genomes. Nucleic Acids Research 32: D41–44PubMedCrossRefGoogle Scholar
  51. 51.
    Breitkreutz B-J, Stark C, Tyers M (2003) Osprey: A network visualization system. Genome Biology 4: R22PubMedCrossRefGoogle Scholar
  52. 52.
    Breitkreutz B-J, Stark C, Tyers M (2003) The grid: The general repository for interaction datasets. Genome Biology 4: R23PubMedCrossRefGoogle Scholar
  53. 53.
    von Mehring C, Krause R, Snel B, Cornell M, Oliver S, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417: 399–403CrossRefGoogle Scholar
  54. 54.
    Deane C, Salwinski L, Xenarios I, Eisenberg D (2002) Protein interactions: Two methods for the assessment of the reliability of high throughput ovservations. Mol Cell Proteomics 1: 349–356PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2007

Authors and Affiliations

  • Daniel Schöner
    • 1
    • 4
  • Simon Barkow 
    • 2
    • 4
  • Stefan Bleuler
    • 2
    • 4
  • Anja Wille
    • 3
    • 4
  • Philip Zimmermann
    • 1
    • 4
  • Peter Bühlmann
    • 3
    • 4
  • Wilhelm Gruissem
    • 1
    • 4
  • Eckart Zitzler
    • 2
    • 4
  1. 1.Plant BiotechnologyInstitute of Plant SciencesSwitzerland
  2. 2.Computer Engineering and Networks LaboratorySwitzerland
  3. 3.Seminar for StatisticsSwiss Federal Institute of Technology (ETH)ZürichSwitzerland
  4. 4.Reverse Engineering GroupSwiss Federal Institute of Technology (ETH)Zürich

Personalised recommendations