Metabolic flux analysis: Recent advances in carbon metabolism in plants

  • Martine Dieuaide-Noubhani
  • Ana-Paula Alonso
  • Dominique Rolin
  • Wolfgang Eisenreich
  • Philippe Raymond
Part of the Experientia Supplementum book series (EXS, volume 97)


Isotopic tracers are used to both trace metabolic pathways and quantify fluxes through these pathways. The use of different labeling methods recently led to profound changes in our views of plant metabolism. Examples are taken from primary metabolism, with sugar interconversions, carbon partitioning between glycolysis and the pentose phosphate pathway, or metabolite inputs into the tricarboxylic acid (TCA) cycle, as well as from secondary metabolism with the relative contribution of the plastidial and cytosolic pathways to the biosynthesis of terpenoids. While labeling methods are often distinguished according to the instruments used for label detection, emphasis is put here on labeling duration. Short time labeling is adequate to study limited areas of the metabolic network. Long-term labeling, when designed to obtain metabolic and isotopic steady-state, allows to calculate various fluxes in large areas of central metabolism. After longer labeling periods, large amounts of label accumulate in structural or storage compounds: their detailed study through the retrobiosynthetic method gives access to the biosynthetic pathways of otherwise undetectable precursors. This chapter presents the power and limits of the different methods, and illustrates how they can be associated with each other and with other methods of cell biology, to provide the information needed for a rational approach of metabolic engineering.


Malic Enzyme Label Experiment Tomato Cell Acetyl Unit Plant Terpenoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roßmann A, Butzenlechner M, Schmidt H-L (1991) Evidence for a nonstatistical carbon isotope distribution in natural glucose. Plant Physiol 96: 609–614PubMedGoogle Scholar
  2. 2.
    Klumpp K, Schäufele R, Lötscher M, Lattanzi FA, Feneis W, Schnyder H (2005) C-isotope composition of CO2 respired by shoots and roots: fractionation during dark respiration? Plant, Cell & Env 28: 241–250CrossRefGoogle Scholar
  3. 3.
    Kruger NJ, Ratcliffe RG, Roscher A (2003) Quantitative approaches for analysing fluxes through plant metabolic networks using NMR and stable isotope labelling. Phytochem Rev 2: 17–30CrossRefGoogle Scholar
  4. 4.
    Roessner-Tunali U, Liu J, Leisse A, Balbo I, Perez-Melis A, Willmitzer L, Fernie AR (2004) Kinetics of labelling of organic and amino acids in potato tubers by gas chromatography-mass spectrometry following incubation in 13C labelled isotopes. Plant J 39: 668–679PubMedCrossRefGoogle Scholar
  5. 5.
    Reiner J (1953) The study of metabolic turnover rates by means of isotopic tracers. I. fundamental relations. Arch Biochem Biophys 46: 53–81PubMedCrossRefGoogle Scholar
  6. 6.
    Katz J, Wood H (1963) The use of C14O2 yields from Glucose-1-and-6-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem 238: 517–524PubMedGoogle Scholar
  7. 7.
    Katz K, Grunnet N (1979) Estimation of metabolic pathways in steady state in vitro. Rates of tricarboxylic acid and pentose cycle. In: H Kornberg (ed): Techniques in metabolic research, Elsevier Scientific Publishing Co, New YorkGoogle Scholar
  8. 8.
    ap Rees T (1980) Assessment of the contributions of metabolic pathways to plant respiration. In: D Davies (ed): Metabolism and respiration, Academic Press, New York, 1–29Google Scholar
  9. 9.
    Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18: 326–332PubMedCrossRefGoogle Scholar
  10. 10.
    van Winden W, Verheijen P, Heijnen S (2001) Possible pitfalls of flux calculations based on C-13-labeling. Metab Eng 3: 151–162PubMedCrossRefGoogle Scholar
  11. 11.
    McNeil SD, Rhodes D, Russell BL, Nuccio ML, Shachar-Hill Y, Hanson AD (2000) Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco. Plant Physiol 124: 153–162PubMedCrossRefGoogle Scholar
  12. 12.
    Rhodes D, McNeil S, Nuccio M, Hanson A (2004) Metabolic engineering and flux analysis of glycine betaine synthesis in plants: progress and prospects. In: B Kholodenko, HV Westerhoff (eds): Metabolic engineering in the post genomic era, Horizon Bioscience, Wymondham, UKGoogle Scholar
  13. 13.
    Kelleher JK (2004) Probing metabolic pathways with isotopic tracers: insights from mammalian metabolic physiology. Metab Eng 6: 1–5PubMedCrossRefGoogle Scholar
  14. 14.
    Roscher A, Kruger NJ, Ratcliffe RG (2000) Strategies for metabolic flux analysis in plants using isotope labelling. J Biotechnol 77: 81–102PubMedCrossRefGoogle Scholar
  15. 15.
    Hargreaves JA, ap Rees T (1988) Turnover of starch and sucrose in roots of Pisum sativum. Phytochem 27: 1627–1629CrossRefGoogle Scholar
  16. 16.
    Dancer J, David M, Stitt M (1990) Water stress leads to a change of partitioning in favour of sucrose in heterotrophic cell suspension cultures of Chenopodium rubrum. Plant Cell Environ 13: 957–963CrossRefGoogle Scholar
  17. 17.
    Hill ST, ap Rees T (1994) Fluxes of carbohydrate metabolism in ripening bananas. Planta 192: 52–60Google Scholar
  18. 18.
    Geigenberger P, Reimholz R, Geiger M, Merlo L, Canale V, Stitt M (1997) Regulation of sucrose and starch metabolism in potato tubers in response to short-term water deficit. Planta 201: 502–518CrossRefGoogle Scholar
  19. 19.
    N’tchobo H, Dali N, NguyenQuoc B, Foyer CH, Yelle S (1999) Starch synthesis in tomato remains constant throughout fruit development and is dependent on sucrose supply and sucrose synthase activity. J Exp Bot 50: 1457–1463CrossRefGoogle Scholar
  20. 20.
    Dieuaide-Noubhani M, Raffard G, Canioni P, Pradet A, Raymond P (1995) Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from (13C) or (14C) labeled glucose. J Biol Chem 270: 13147–13159PubMedCrossRefGoogle Scholar
  21. 21.
    Rontein D, Dieuaide-Noubhani M, Dufourc Erick J, Raymond P, Rolin D (2002) The metabolic architecture of plant cells. Stability of central metabolism and flexibility of anabolic pathway during the growth cycle of tomato cells. J Biol Chem 277: 43948–43960PubMedCrossRefGoogle Scholar
  22. 22.
    Alonso AP, Vigeolas H, Raymond P, Rolin D, Dieuaide-Noubhani M (2005) A new substrate cycle in plants: evidence for a high glucose-phosphate-to-glucose turnover from in vivo steady-state and pulse-labeling experiments with [C-13] glucose and [C-14] glucose. Plant Physiol 138: 2220–2232PubMedCrossRefGoogle Scholar
  23. 23.
    Trethewey RN, Riesmeier JW, Willmitzer L, Stitt M, Geigenberger P (1999) Tuber-specific expression of a yeast invertase and a bacterial glucokinase in potato leads to an activation of sucrose phosphate synthase and the creation of a sucrose futile cycle. Planta 208: 227–238CrossRefPubMedGoogle Scholar
  24. 24.
    Garlick AP, Moore C, Kruger NJ (2002) Monitoring flux through the oxidative pentose phosphate pathway using [1–14C]gluconate. Planta 216: 265–272PubMedCrossRefGoogle Scholar
  25. 25.
    Schwender J, Ohlrogge JB, Shachar-Hill Y (2003) A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J Biol Chem 278: 29442–29453PubMedCrossRefGoogle Scholar
  26. 26.
    Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432: 779–782PubMedCrossRefGoogle Scholar
  27. 27.
    Glawischnig E, Gierl A, Tomas A, Bacher A, Eisenreich W (2001) Retrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. Metabolic flux in developing maize kernels. Plant Physiol 125: 1178–1186PubMedCrossRefGoogle Scholar
  28. 28.
    Glawischnig E, Gierl A, Tomas A, Bacher A, Eisenreich W (2003) Starch biosynthesis and intermediary metabolism in maize kernels. Quantitative analysis of metabolite flux by NMR. Plant Physiol 130: 1717–1727CrossRefGoogle Scholar
  29. 29.
    Ettenhuber C, Spielbauer G, Margl L, Hannah L, Gierl A, Bacher A, Genschel U, Eisenreich W (2005) Changes in flux pattern of the central carbohydrate metabolism during kernel development in maize. Phytochem 66: 2632–2642CrossRefGoogle Scholar
  30. 30.
    Eisenreich W, Ettenhuber C, Laupitz R, Theus C, Bacher A (2004) Isotopolog perturbation techniques for metabolic networks. Metabolic recycling of nutritional glucose in Drosophila melanogaster. Proc Natl Acad Sci USA 101: 6764–6769PubMedCrossRefGoogle Scholar
  31. 31.
    Ettenhuber C, Radykewicz T, Kofer W, Koop H-U, Bacher A, Eisenreich W (2005) Metabolic flux analysis in complex isotopologous space. Recycling of glucose in tobacco plants. Phytochem 66: 323–335CrossRefGoogle Scholar
  32. 32.
    Salon C, Raymond P, Pradet A (1988) Quantification of carbon fluxes through the tricarboxylic acid cycle in early germinating lettuce embryos. J Biol Chem 263: 12278–12287PubMedGoogle Scholar
  33. 33.
    Ferrario-Mery S, Hodges M, Hirel B, Foyer CH (2002) Photorespiration-dependent increases in phosphoenolpyruvate carboxylase, isocitrate dehydrogenase and glutamate dehydrogenase in transformed tobacco plants deficient in ferredoxin-dependent glutaminealpha-ketoglutarate aminotransferase. Planta 214: 877–886PubMedCrossRefGoogle Scholar
  34. 34.
    Dieuaide Noubhani M, Canioni P, Raymond P (1997) Sugar-starvation-induced changes of carbon metabolism in excised maize root tips. Plant Physiol 115: 1505–1513PubMedGoogle Scholar
  35. 35.
    Macnicol PK, Raymond P (1998) Role of phosphoenolpyruvate carboxylase in malate production by the developing barley aleurone layer. Physiol Plant 103: 132–138CrossRefGoogle Scholar
  36. 36.
    Edwards S, Nguyen BT, Do B, Roberts JKM (1998) Contribution of malic enzyme, pyruvate kinase, phosphoenolpyruvate carboxylase, and the Krebs cycle to respiration and biosynthesis and to intracellular pH regulation during hypoxia in maize root tips observed by nuclear magnetic resonance imaging and gas chromatography-mass spectrometry. Plant Physiol 116: 1073–1081PubMedCrossRefGoogle Scholar
  37. 37.
    Raymond P, Al-Ani A, Pradet A (1985) ATP production by respiration and fermentation, and energy charge during aerobiosis and anaerobiosis in twelve fatty and starchy germinating seeds. Plant Physiol 79: 879–884PubMedCrossRefGoogle Scholar
  38. 38.
    Canvin D, Beevers H (1961) Sucrose synthesis from acetate in the germinating castor bean: kinetics and pathways. J Biol Chem 236: 988–995PubMedGoogle Scholar
  39. 39.
    Dieuaide M, Brouquisse R, Pradet A, Raymond P (1992) Increased fatty acid beta-oxidation after glucose starvation in maize root tips. Plant Physiol 99: 595–600PubMedGoogle Scholar
  40. 40.
    Pracharoenwattana I, Cornah J, Smith S (2005) Arabidopsis peroxisomal citrate synthase is required for Fatty Acid respiration and seed germination. Plant Cell 17: 2037–2048PubMedCrossRefGoogle Scholar
  41. 41.
    Wiechert W (2001) C-13 metabolic flux analysis. Metab Eng 3: 195–206PubMedCrossRefGoogle Scholar
  42. 42.
    Wiechert W, Mollney M, Petersen S, de Graaf AA (2001) A universal framework for C-13 metabolic flux analysis. Metab Eng 3: 265–283PubMedCrossRefGoogle Scholar
  43. 43.
    Eisenreich W, Strauß G, Werz U, Bacher A, Fuchs G (1993) Retrobiosynthetic analysis of carbon fixation in the phototrophic eubacterium Chloroflexus aurantiacus. Eur J Biochem 215: 619–632PubMedCrossRefGoogle Scholar
  44. 44.
    Sacchettini J, Poulter C (1997) Creating isoprenoid diversity. Science 277: 1788–1789PubMedCrossRefGoogle Scholar
  45. 45.
    Bochar D, Friesen J, Stauffacher C, Rodwell V (1999) Biosynthesis of mevalonic acid from acteyl-CoA. In: D Cane (ed.): Comprehensive natural product chemistry, Pergamon, Oxford, 15–44Google Scholar
  46. 46.
    Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6: 78–84PubMedCrossRefGoogle Scholar
  47. 47.
    Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61: 1401–1426PubMedCrossRefGoogle Scholar
  48. 48.
    Disch A, Hemmerlin A, Bach TJ, Rohmer M (1998) Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells. Biochem J 331: 615–621PubMedGoogle Scholar
  49. 49.
    Eisenreich W, Menhard B, Hylands PJ, Zenk MH, Bacher A (1996) Studies on the biosynthesis of taxol: the taxane carbon skeleton is not of mevalonoid origin. Proc Natl Acad Sci USA 93: 6431–6436PubMedCrossRefGoogle Scholar
  50. 50.
    Eisenreich W, Sagner S, Zenk MH, Bacher A (1997) Monoterpenoid essential oils are not of mevalonoid origin. Tetrahedron Letters 38: 3889–3892CrossRefGoogle Scholar
  51. 51.
    Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400: 271–274PubMedCrossRefGoogle Scholar
  52. 52.
    Eichinger D, Bacher A, Zenk MH, Eisenreich W (1999) Analysis of metabolic pathways via quantitative prediction of isotope labeling patterns: a retrobiosynthetic 13C NMR study on the monoterpene loganin. Phytochem 51: 223–236CrossRefGoogle Scholar
  53. 53.
    Eisenreich W, Rieder C, Grammes C, Hessler G, Adam KP, Becker H, Arigoni D, Bacher A (1999) Biosynthesis of a Neo-epi-verrucosane diterpene in the liverwort Fossombronia alaskana — A retrobiosynthetic NMR study. J Biol Chem 274: 36312–36320PubMedCrossRefGoogle Scholar
  54. 54.
    Eichinger D, Bacher A, Zenk MH, Eisenreich W (1999) Quantitative assessment of metabolic flux by C-13 NMR analysis. Biosynthesis of anthraquinones in Rubia tinctorum. J Am Chem Soc 121: 7475CrossRefGoogle Scholar
  55. 55.
    Margl L, Ettenhuber C, Istvan G, Zenk MH, Bacher A, Eisenreich W (2005) Biosynthesis of benzofuran derivatives in root cultures of Tagetes patula via phenylalanine and 1-deoxy-D-xylulose 5-phosphate. Phytochem 66: 887–899CrossRefGoogle Scholar
  56. 56.
    Fellermeier M, Eisenreich W, Bacher A, Zenk MH (2001) Biosynthesis of cannabinoids: incorporation experiments with 13C-labeled glucoses. Eur J Biochem 268: 1596–1604PubMedCrossRefGoogle Scholar
  57. 57.
    Goese M, Kammhuber K, Bacher A, Zenk MH, Eisenreich W (1999) Biosynthesis of bitter acids in hops. A 13C-NMR and 2H-NMR study on the building blocks of humulone. Eur J Biochem 263: 447–454PubMedCrossRefGoogle Scholar
  58. 58.
    Adam P, Arigoni D, Bacher A, Eisenreich W (2002) Biosynthesis of hyperforin in Hypericum perforatum. J Med Chem 45: 4793Google Scholar
  59. 59.
    Wang CZ, Maier UH, Eisenreich W, Adam P, Obersteiner I, Keil M, Bacher A, Zenk MH (2001) Unexpected biosynthetic precursors of amarogentin — a retrobiosynthetic 13C NMR study. Eur J Org Chem 1459–1465Google Scholar
  60. 60.
    Schuhr C, Radykewicz T, Sagner S, Latzel C, Zenk M, Arigoni D, Bacher A, Rohdich F, Eisenreich W (2003) Quantitative assessment of metabolite flux by NMR spectroscopy. Crosstalk between the two isoprenoid biosynthesis pathways in plants. Phytochem Rev 2: 3–16CrossRefGoogle Scholar
  61. 61.
    Adam KP, Zapp J (1998) Biosynthesis of the isoprene units of chamomile sesquiterpenes. Phytochem 48: 953–959CrossRefGoogle Scholar
  62. 62.
    Itoh D, Karunagoda RP, Fushie T, Katoh K, Nabeta K (2000) Nonequivalent labeling of the phytyl side chain of chlorophyll a in callus of the hornwort Anthoceros punctatus. J Nat Prod 63: 1090–1093PubMedCrossRefGoogle Scholar
  63. 63.
    Yang JW, Orihara Y (2002) Biosynthesis of abietane diterpenoids in cultured cells of Torreya nucifera var. radicans: biosynthetic inequality of the FPP part and the terminal IPP. Tetrahedron 58: 1265–1270CrossRefGoogle Scholar
  64. 64.
    Fernie AR, Geigenberger P, Stitt M (2005) Flux an important, but neglected, component of functional glenomics. Curr Opin Plant Biol 8: 174–182PubMedCrossRefGoogle Scholar
  65. 65.
    Geigenberger P, Stitt M (1993) Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta 189: 329–339CrossRefGoogle Scholar
  66. 66.
    Spielbauer G, Margl L, Hannah LC, Römisch W, Ettenhuber C, Bacher A, Gierl A, Eisenreich W, Genschel U (2006) Robustness of central carbohydrate metabolism in developing maize kernels. Phytochem 67: 1460–1475CrossRefGoogle Scholar
  67. 67.
    Brouquisse R, Gaudillere JP, Raymond P (1998) Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to light/dark cycles and to extended darkness. Plant Physiol 117: 1281–1291PubMedCrossRefGoogle Scholar
  68. 68.
    Gibon Y, Blasing OE, Palacios-Rojas N, Pankovic D, Hendriks JHM, Fisahn J, Hohne M, Gunther M, Stitt M (2004) Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. Plant J 39: 847–862PubMedCrossRefGoogle Scholar
  69. 69.
    Keurentjes JJB, Fu J, de Vos CHR, Lommen A, Hall RD, Bino RJ, van der Plas LHW, Jansen RC, Vreugdenhil D, Koornneef M (2006) The genetics of plant metabolism. Nat Genet 38: 842–849PubMedCrossRefGoogle Scholar
  70. 70.
    Baxter I, Borevitz J (2006) Mapping a plant’s chemical vocabulary. Nat Genet 38: 737–738PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2007

Authors and Affiliations

  • Martine Dieuaide-Noubhani
    • 1
  • Ana-Paula Alonso
    • 3
  • Dominique Rolin
    • 1
  • Wolfgang Eisenreich
    • 2
  • Philippe Raymond
    • 1
  1. 1.UMR 619 ‘Biologie du Fruit’INRA Université Bordeaux 2, IBVMVillenave d’Ornon CedexFrance
  2. 2.Lehrstuhl für Organische Chemie und BiochemieTechnische Universität MünchenGarchingGermany
  3. 3.Department of Plant BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations