Antagonists of CXCR3: a review of current progress

  • Tassie L. Collins
  • Michael G. Johnson
  • Julio C. Medina
Part of the Progress in Inflammation Research book series (PIR)


CXCR3 was cloned and identified as a receptor for CXCL9 and CXCL10 by Loetscher, et al., in 1996 [1], and was subsequently identified as a receptor for CXCL11 [2]. CXCL9, CXCL10 and CXCL11 are selective, potent agonists of CXCR3 (Kd 0.1–5 nM) [1]–[4]. Additional chemokines have been reported to bind to CXCR3 (e.g., CXCL13 [5] and CCL11 [6]), however the reported affinities are generally weak and the biological significance of the interactions is questionable. Similarly, the ligands for CXCR3 have been reported to be antagonists of CCR3 [7] and CCR5 [8], but high concentrations of the CXCR3 ligands are required to achieve inhibition of CCR3 or CCR5 biological functions.


Multiple Sclerosis Cardiac Allograft Bronchiolitis Obliterans Syndrome Cardiac Allograft Vasculopathy Chemokine Receptor CXCR3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, Baggiolini M, Moser B (1996) Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 184: 799–802CrossRefGoogle Scholar
  2. 2.
    Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE et al (1998) Interferon-inducible T cell alpha chemoattractant (ITAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187: 2009–2021PubMedCrossRefGoogle Scholar
  3. 3.
    Weng Y, Siciliano SJ, Waldburger KE, Sirotina-Meisher A, Staruch MJ, Daugherty BL, Gould SL, Springer MS, DeMartino JA (1998) Binding and functional properties of recombinant and endogenous CXCR3 chemokine receptors. J Biol Chem 273: 18288–18291PubMedCrossRefGoogle Scholar
  4. 4.
    Loetscher M, Loetscher P, Brass N, Meese E, Moser B (1998) Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol 28: 3696–3705PubMedCrossRefGoogle Scholar
  5. 5.
    Jenh CH, Cox MA, Hipkin W, Lu T, Pugliese-Sivo C, Gonsiorek W, Chou CC, Narula SK, Zavodny PJ (2001) Human B cell-attracting chemokine 1 (BCA-1; CXCL13) is an agonist for the human CXCR3 receptor. Cytokine 15: 113–121PubMedCrossRefGoogle Scholar
  6. 6.
    Xanthou G, Duchesnes CE, Williams TJ, Pease JE (2003) CCR3 functional responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11. Eur J Immunol 33: 2241–2250PubMedCrossRefGoogle Scholar
  7. 7.
    Loetscher P, Pellegrino A, Gong JH, Mattioli I, Loetscher M, Bardi G, Baggiolini M, Clark-Lewis I (2001) The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J Biol Chem 276: 2986–2991PubMedCrossRefGoogle Scholar
  8. 8.
    Petkovic V, Moghini C, Paoletti S, Uguccioni M, Gerber B (2004) I-TAC/CXCL11 is a natural antagonist for CCR5. J Leukoc Biol 76: 701–708PubMedCrossRefGoogle Scholar
  9. 9.
    Agostini C, Calabrese F, Rea F, Facco M, Tosoni A, Loy M, Binotto G, Valente M, Trentin L, Semenzato G (2001) Cxcr3 and its ligand CXCL10 are expressed by inflammatory cells infiltrating lung allografts and mediate chemotaxis of T cells at sites of rejection. Am J Pathol 158: 1703–1711PubMedGoogle Scholar
  10. 10.
    Melter M, Exeni A, Reinders ME, Fang JC, McMahon G, Ganz P, Hancock WW, Briscoe DM (2001) Expression of the chemokine receptor CXCR3 and its ligand IP-10 during human cardiac allograft rejection. Circulation 104: 2558–2564PubMedGoogle Scholar
  11. 11.
    Goddard S, Williams A, Morland C, Qin S, Gladue R, Hubscher SG, Adams DH (2001) Differential expression of chemokines and chemokine receptors shapes the inflammatory response in rejecting human liver transplants. Transplantation 72: 1957–1967PubMedCrossRefGoogle Scholar
  12. 12.
    Zhao DX, Hu Y, Miller GG, Luster AD, Mitchell RN, Libby P (2002) Differential expression of the IFN-gamma-inducible CXCR3-binding chemokines, IFN-inducible protein 10, monokine induced by IFN, and IFN-inducible T cell alpha chemoattractant in human cardiac allografts: association with cardiac allograft vasculopathy and acute rejection. J Immunol 169: 1556–1560PubMedGoogle Scholar
  13. 13.
    Fahmy NM, Yamani MH, Starling RC, Ratliff NB, Young JB, McCarthy PM, Feng J, Novick AC, Fairchild RL (2003) Chemokine and chemokine receptor gene expression indicates acute rejection of human cardiac transplants. Transplantation 75: 72–78PubMedCrossRefGoogle Scholar
  14. 14.
    Kao J, Kobashigawa J, Fishbein MC, MacLellan WR, Burdick MD, Belperio JA, Strieter RM (2003) Elevated serum levels of the CXCR3 chemokine ITAC are associated with the development of transplant coronary artery disease. Circulation 107: 1958–1961PubMedCrossRefGoogle Scholar
  15. 15.
    Fahmy NM, Yamani MH, Starling RC, Ratliff NB, Young JB, McCarthy PM, Feng J, Novick AC, Fairchild RL (2003) Chemokine and receptor-gene expression during early and late acute rejection episodes in human cardiac allografts. Transplantation 75: 2044–2047PubMedCrossRefGoogle Scholar
  16. 16.
    Hu H, Aizenstein BD, Puchalski A, Burmania JA, Hamawy MM, Knechtle SJ (2004) Elevation of CXCR3-binding chemokines in urine indicates acute renal-allograft dysfunction. Am J Transplant 4: 432–437PubMedCrossRefGoogle Scholar
  17. 17.
    Panzer U, Reinking RR, Steinmetz OM, Zahner G, Sudbeck U, Fehr S, Pfalzer B, Schneider A, Thaiss F, Mack M et al (2004) CXCR3 and CCR5 positive T-cell recruitment in acute human renal allograft rejection. Transplantation 78: 1341–1350PubMedCrossRefGoogle Scholar
  18. 18.
    Hancock WW, Lu B, Gao W, Csizmadia V, Faia K, King JA, Smiley ST, Ling M, Gerard NP, Gerard C (2000) Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Exp Med 192: 1515–1520PubMedCrossRefGoogle Scholar
  19. 19.
    Hancock WW, Gao W, Csizmadia V, Faia KL, Shemmeri N, Luster AD (2001) Donorderived IP-10 initiates development of acute allograft rejection. J Exp Med 193: 975–980PubMedCrossRefGoogle Scholar
  20. 20.
    Miura M, Morita K, Kobayashi H, Hamilton TA, Burdick MD, Strieter RM, Fairchild RL (2001) Monokine induced by IFN-gamma is a dominant factor directing T cells into murine cardiac allografts during acute rejection. J Immunol 167: 3494–3504PubMedGoogle Scholar
  21. 21.
    Belperio JA, Keane MP, Burdick MD, Lynch JP 3rd, Xue YY, Li K, Ross DJ, Strieter RM (2002) Critical role for CXCR3 chemokine biology in the pathogenesis of bronchiolitis obliterans syndrome. J Immunol 169: 1037–1049PubMedGoogle Scholar
  22. 22.
    Baker MS, Chen X, Rotramel AR, Nelson JJ, Lu B, Gerard C, Kanwar Y, Kaufman DB (2003) Genetic deletion of chemokine receptor CXCR3 or antibody blockade of its ligand IP-10 modulates posttransplantation graft-site lymphocytic infiltrates and prolongs functional graft survival in pancreatic islet allograft recipients. Surgery 134: 126–133PubMedCrossRefGoogle Scholar
  23. 23.
    Duffner U, Lu B, Hildebrandt GC, Teshima T, Williams DL, Reddy P, Ordemann R, Clouthier SG, Lowler K, Liu C et al (2003) Role of CXCR3-induced donor T-cell migration in acute GVHD. Exp Hematol 31: 897–902PubMedCrossRefGoogle Scholar
  24. 24.
    Belperio JA, Keane MP, Burdick MD, Lynch JP 3rds, Zisman DA, Xue YY, Li K, Ardehali A, Ross DJ, Strieter RM (2003) Role of CXCL9/CXCR3 chemokine biology during pathogenesis of acute lung allograft rejection. J Immunol 171: 4844–4852PubMedGoogle Scholar
  25. 25.
    Zhang Z, Kaptanoglu L, Tang Y, Ivancic D, Rao SM, Luster A, Barrett TA, Fryer J (2004) IP-10-induced recruitment of CXCR3 host T cells is required for small bowel allograft rejection. Gastroenterology 126: 809–818PubMedCrossRefGoogle Scholar
  26. 26.
    Hildebrandt GC, Corrion LA, Olkiewicz KM, Lu B, Lowler K, Duffner UA, Moore BB, Kuziel WA, Liu C, Cooke KR (2004) Blockade of CXCR3 receptor: ligand interactions reduces leukocyte recruitment to the lung and the severity of experimental idiopathic pneumonia syndrome. J Immunol 173: 2050–2059PubMedGoogle Scholar
  27. 27.
    Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM et al (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103: 807–815PubMedCrossRefGoogle Scholar
  28. 28.
    Balashov KE, Rottman JB, Weiner HL, Hancock WW (1999) CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci 96: 6873–6878PubMedCrossRefGoogle Scholar
  29. 29.
    Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN (2000) Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol Appl Neurobiol 26: 133–142PubMedCrossRefGoogle Scholar
  30. 30.
    Mahad DJ, Howell SJ, Woodroofe MN (2002) Expression of chemokines in the CSF and correlation with clinical disease activity in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 72: 498–502PubMedGoogle Scholar
  31. 31.
    Sorensen TL, Trebst C, Kivisakk P, Klaege KL, Majmudar A, Ravid R, Lassmann H, Olsen DB, Strieter RM, Ransohoff RM et al (2002) Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. J Neuroimmunol 127: 59–68PubMedCrossRefGoogle Scholar
  32. 32.
    Klein RS, Izikson L, Means T, Gibson HD, Lin E, Sobel RA, Weiner HL, Luster AD (2004) IFN-inducible protein 10/CXC chemokine ligand 10-independent induction of experimental autoimmune encephalomyelitis. J Immunol 172: 550–559PubMedGoogle Scholar
  33. 33.
    Narumi S, Kaburaki T, Yoneyama H, Iwamura H, Kobayashi Y, Matsushima K (2002) Neutralization of IFN-inducible protein 10/CXCL10 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol 32: 1784–1791PubMedCrossRefGoogle Scholar
  34. 34.
    Fife BT, Kennedy KJ, Paniagua MC, Lukacs NW, Kunkel SL, Luster AD, Karpus WJ (2001) CXCL10 (IFN-γ-inducible protein-10) control of encephalitogenic CD4+ T cell accumulation in the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 166: 7617–7624PubMedGoogle Scholar
  35. 35.
    Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD (2002) IFN-g-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 168: 3195–3204PubMedGoogle Scholar
  36. 36.
    Liu MT, Chen BP, Oertel P, Buchmeier MJ, Armstrong D, Hamilton TA, Lane TE (2000) The T cell chemoattractant IFN-inducible protein 10 is essential in host defense against viral-induced neurologic disease. J Immunol 165: 2327–2330PubMedGoogle Scholar
  37. 37.
    Panitch HS, Hirsch RL, Haley AS, Johnson KP (1987) Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1(8538): 893–895PubMedCrossRefGoogle Scholar
  38. 38.
    Skurkovich S, Boiko A, Beliaeva I, Buglak A, Alekseeva T, Smirnova N, Kulakova O, Tchechonin V, Gurova O, Deomina T et al (2001) Randomized study of antibodies to IFN-gamma and TNF-alpha in secondary progressive multiple sclerosis. Multiple Sclerosis 7: 277–284PubMedGoogle Scholar
  39. 39.
    Axte JM, Foley JJ, Kingsbury WD, Sarau HM (2003) International publication WO 03/101970Google Scholar
  40. 40.
    Watson RJ, Meissner JWG, Owen DA (2004) International publication WO 04/94381Google Scholar
  41. 41.
    Gao P, Zhou XY, Yashiro-Ohtani Y, Yang YF, Sugimoto N, Ono S, Nakanishi T, Obikata S, Imanishi T, Egawa T et al (2003) The unique target specificity of a nonpeptide chemokine receptor antagonist: selective blockade of two TH1 chemokine receptors CCR5 and CXCR3. J Leukocyte Biol 73: 273–280PubMedCrossRefGoogle Scholar
  42. 42.
    Schall TJ, Dairaghi DJ, McMaster B (2001) International publication WO 01/16114Google Scholar
  43. 43.
    Medina JC, Johnson MG, Li AR, Jiwen L, Huang AX, Zhu L, Marcus AP (2002) International publication WO 02/083143Google Scholar
  44. 44.
    Berry K, Friedrich M, Kersey K, Stempien MJ, Wagner F, van Lier JJ, Sabat R, Wolk K (2004) Evaluation of T0906487, a CXCR3 antagonist, in a Phase 2a Psoriasis Trial. Inflammation Research Association Biannual meeting, Lake George, NY, September, 2004. Inflammation Research 53: S222Google Scholar
  45. 45.
    Collins TL, Johnson M, Li A.-R, Liu J, Huang A, Zhu L, Marcus A, Danao J, Sablan E, Kumer J et al (2003) T487: A selective and potent small molecule antagonist of CXCR3. 6th World Congress on Inflammation, Vancouver, British Columbia, Canada; August 02–06 2003. Inflammation Research 52(Suppl 2): 118Google Scholar
  46. 46.
    Floren LC, Berry K, Tonn G, Ye Q, Wright M, Huang AX, Wang X, Marcus A, Johnson M, Collins T et al (2003) T0906487 (T487), a novel CXCR3 antagonist: First time in human study of safety and pharmacokinetics. 6th World Congress on Inflammation, Vancouver, British Columbia, Canada; August 02–06 2003. Inflammation Research 52(Suppl 2): 159Google Scholar
  47. 47.
    Owen DA, Watson RJ, Meissner JWG, Allen DR (2005) International publication WO 05/003127Google Scholar
  48. 48.
    Watson RJ, Meissner JWG, Christie MI, Owen DA (2003) International publication WO 03/070242Google Scholar
  49. 49.
    Ohshima E, Sone H, Kotera O, Komatsu R, Larosa GJ, Luly JR (2002) International publication WO 02/085862Google Scholar
  50. 50.
    Lin C-C, Liu J-F, Chang L-W, Chen S-J, Xiang Y, Cheng P, Jang J-J (2004) US Patent application publication US 2004/0209902Google Scholar
  51. 51.
    Salomon I, Netzer N, Wildbaum G, Schif-Zuck S, Maor G, Karin N (2002) Targeting the function of IFN-γ-inducible protein 10 suppresses ongoing adjuvant arthritis. J Immunol 169: 2685–2693PubMedGoogle Scholar
  52. 52.
    Singh UP, Singh S, Taub DD, Lillard JW Jr. (2003) Inhibition of IFN-gamma-inducible protein-10 abrogates colitis in IL-10-/- mice. J Immunol 171: 1401–1406PubMedGoogle Scholar
  53. 53.
    Howard M, Deshpande S, Ferlin W, Arimilli S. US patent 6,171, 590Google Scholar
  54. 54.
    Arimilli S, Ferlin W, Deshpande S, Mocci S (2002) US patent application publication 2002/0039578Google Scholar
  55. 55.
    Balasa B, Tsurushita N, Landolfi N (2004) International publication WO 04/101511Google Scholar
  56. 56.
    Clark-Lewis I, Mattioli I, Gong J-H, Loetscher P (2003) Structure-function relationship between the human chemokine receptor CXCR3 and its ligands. J Biol Chem 278: 289–295PubMedCrossRefGoogle Scholar
  57. 57.
    Proost P, Schutyser E, Menten P, Struyf S, Wuyts A, Opdenakker G, Detheux M, Parmentier M, Durinx C, Lambeir A-M et al (2001) Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood 98: 3554–3561PubMedCrossRefGoogle Scholar
  58. 58.
    Van Damme J, Proost P (2002) International publication WO 02/059301Google Scholar
  59. 59.
    Proudfoot AE, Handel TM, Johnson Z, Lau EK, LiWang P, Clark-Lewis I, Borlat F, Wells TNC, Kosco-Vilbois MH (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci 100: 1885–1890PubMedCrossRefGoogle Scholar
  60. 60.
    Lau EK, Paavola CD, Johnson Z, Gaudry J-P, Geretti E, Borlat F, Kungl AJ, Proudfoot AE, Handel TM (2004) Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1. J Biol Chem 279: 22294–22305PubMedCrossRefGoogle Scholar
  61. 61.
    Proudfoot A, Kosco-Vilbois M (2003) International publication WO 03/106488Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Tassie L. Collins
    • 1
  • Michael G. Johnson
    • 2
  • Julio C. Medina
    • 2
  1. 1.Department of NeuroscienceAmgen Inc.South San FranciscoUSA
  2. 2.Department of ChemistryAmgen Inc.South San FranciscoUSA

Personalised recommendations