Advertisement

Chemokines in allergic responses: eosinophils, basophils, mast cells

  • Zamaneh Mikhak
  • Andrew D. Luster
Part of the Progress in Inflammation Research book series (PIR)

Abstract

Eosinophils, basophils and mast cells play key roles in the allergic response. These cells are cellular members of the innate immune system and contain granules with a variety of potent biological mediators. Mast cells are tissue bound and positioned near epithelial surfaces and as such can respond quickly to tissue injury, parasites and allergens by releasing the content of their granules. Eosinophils and basophils circulate within the blood stream and traffic to sites of tissue damage and parasite/allergen exposure. They too release potent biological mediators upon activation. The activation of mast cells, eosinophils and basophils and the subsequent release of their granules lead to many of the phenotypic features observed in the allergic response, such as vasodilatation and tissue edema.

Keywords

Mast Cell Respiratory Syncytial Virus Chemokine Receptor Allergy Clin Immunol Stem Cell Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hakansson L, Rak S, Dahl R, Venge P (1989) The formation of eosinophil and neutrophil chemotactic activity during a pollen season and after allergen challenge. J Allergy Clin Immunol 83(5): 933–939PubMedCrossRefGoogle Scholar
  2. 2.
    Brown JR, Kleimberg J, Marini M, Sun G, Bellini A, Mattoli S (1998) Kinetics of eotaxin expression and its relationship to eosinophil accumulation and activation in bronchial biopsies and bronchoalveolar lavage (BAL) of asthmatic patients after allergen inhalation. Clin Exp Immunol 114(2): 137–146PubMedCrossRefGoogle Scholar
  3. 3.
    Rojas-Ramos E, Avalos AF, Perez-Fernandez L, Cuevas-Schacht F, Valencia-Maqueda E, Teran LM (2003) Role of the chemokines RANTES, monocyte chemotactic proteins-3 and-4, and eotaxins-1 and-2 in childhood asthma. Eur Respir J 22(2): 310–316PubMedCrossRefGoogle Scholar
  4. 4.
    Liu LY, Jarjour NN, Busse WW, Kelly EA (2003) Chemokine receptor expression on human eosinophils from peripheral blood and bronchoalveolar lavage fluid after segmental antigen challenge. J Allergy Clin Immunol 112(3): 556–562PubMedCrossRefGoogle Scholar
  5. 5.
    Borchers MT, Ansay T, DeSalle R, Daugherty BL, Shen H, Metzger M, Lee NA, Lee JJ (2002) In vitro assessment of chemokine receptor-ligand interactions mediating mouse eosinophil migration. J Leukoc Biol 71(6): 1033–1041PubMedGoogle Scholar
  6. 6.
    Dunzendorfer S, Kaneider NC, Kaser A, Woell E, Frade JM, Mellado M, Martinez-Alonso C, Wiedermann CJ (2001) Functional expression of chemokine receptor 2 by normal human eosinophils. J Allergy Clin Immunol 108(4): 581–587PubMedCrossRefGoogle Scholar
  7. 7.
    Oliveira SH, Lukacs NW (2001) Stem cell factor and igE-stimulated murine mast cells produce chemokines (CCL2, CCL17, CCL22) and express chemokine receptors. Inflamm Res 50(3): 168–174PubMedCrossRefGoogle Scholar
  8. 8.
    Uguccioni M, Mackay CR, Ochensberger B, Loetscher P, Rhis S, LaRosa GJ, Rao P, Ponath PD, Baggiolini M, Dahinden CA (1997) High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J Clin Invest 100(5): 1137–1143PubMedGoogle Scholar
  9. 9.
    Ochensberger B, Tassera L, Bifrare D, Rihs S, Dahinden CA (1999) Regulation of cytokine expression and leukotriene formation in human basophils by growth factors, chemokines and chemotactic agonists. Eur J Immunol 29(1): 11–22PubMedCrossRefGoogle Scholar
  10. 10.
    Mathew A, MacLean JA, DeHaan E, Tager AM, Green FH, Luster AD (2001) Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J Exp Med 193(9): 1087–1096PubMedCrossRefGoogle Scholar
  11. 11.
    Luster AD (2001) Antichemokine immunotherapy for allergic diseases. Curr Opin Allergy Clin Immunol 1(6): 561–567PubMedCrossRefGoogle Scholar
  12. 12.
    Lundahl J, Moshfegh A, Gronneberg R, Hallden G (1998) Eotaxin increases the expression of CD11b/CD18 and adhesion properties in IL5, but not fMLP-prestimulated human peripheral blood eosinophils. Inflammation 22(2): 123–135PubMedCrossRefGoogle Scholar
  13. 13.
    Burke-Gaffney A, Hellewell PG (1998) A CD18/ICAM-1-dependent pathway mediates eosinophil adhesion to human bronchial epithelial cells. Am J Respir Cell Mol Biol 19(3): 408–418PubMedGoogle Scholar
  14. 14.
    Nagata M, Yamamoto H, Tabe K, Sakamoto Y (2001) Eosinophil transmigration across VCAM-1-expressing endothelial cells is upregulated by antigen-stimulated mononuclear cells. Int Arch Allergy Immunol 125(Suppl 1): 7–11PubMedCrossRefGoogle Scholar
  15. 15.
    Bandeira-Melo C, Weller PF (2003) Eosinophils and cysteinyl leukotrienes. Prostaglandins Leukot Essent Fatty Acids 69(2–3): 135–143PubMedCrossRefGoogle Scholar
  16. 16.
    Nagata M, Saito K (2003) The roles of cysteinyl leukotrienes in eosinophilic inflammation of asthmatic airways. Int Arch Allergy Immunol 131(Suppl 1): 7–10PubMedCrossRefGoogle Scholar
  17. 17.
    Costa JJ, Matossian K, Resnick MB, Beil WJ, Wong DT, Gordon JR, Dvorak AM, Weller PF, Galli SJ (1993) Human eosinophils can express the cytokines tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha. J Clin Invest 91(6): 2673–2684PubMedGoogle Scholar
  18. 18.
    Nakajima T, Yamada H, Iikura M, Miyamasu M, Izumi S, Shida H, Ohta K, Imai T, Yoshie O, Mochizuki M et al (1998) Intracellular localization and release of eotaxin from normal eosinophils. FEBS Lett 434(3): 226–230PubMedCrossRefGoogle Scholar
  19. 19.
    Izumi S, Hirai K, Miyamasu M, Takahashi Y, Misaki Y, Takaishi T, Morita Y, Matsushima K, Ida N, Nakamura H et al (1997) Expression and regulation of monocyte chemoattractant protein-1 by human eosinophils. Eur J Immunol 27(4): 816–824PubMedCrossRefGoogle Scholar
  20. 20.
    Oliveira SH, Taub DD, Nagel J, Smith R, Hogaboam CM, Berlin A, Lukacs NW (2002) Stem cell factor induces eosinophil activation and degranulation: mediator release and gene array analysis. Blood 100(13): 4291–4297PubMedCrossRefGoogle Scholar
  21. 21.
    Li H, Sim TC, Grant JA, Alam R (1996) The production of macrophage inflammatory protein-1 alpha by human basophils. J Immunol 157(3): 1207–1212PubMedGoogle Scholar
  22. 22.
    Holgate ST (2000) The role of mast cells and basophils in inflammation. Clin Exp Allergy 30(Suppl 1): 28–32PubMedCrossRefGoogle Scholar
  23. 23.
    Lamkhioued B, Garcia-Zepeda EA, Abi-Younes S, Nakamura H, Jedrzkiewicz S, Wagner L, Renzi PM, Allakhverdi Z, Lilly C, Hamid Q et al (2000) Monocyte chemoattractant protein (MCP)-4 expression in the airways of patients with asthma. Induction in epithelial cells and mononuclear cells by proinflammatory cytokines. Am J Respir Crit Care Med 162(2 Pt 1): 723–732PubMedGoogle Scholar
  24. 24.
    Jedrzkiewicz S, Nakamura H, Silverman ES, Luster AD, Mansharamani N, In KH, Tamura G, Lilly CM (2000) IL-1beta induces eotaxin gene transcription in A549 airway epithelial cells through NF-kappaB. Am J Physiol Lung Cell Mol Physiol 279(6): L1058–1065PubMedGoogle Scholar
  25. 25.
    Singer CA, Salinthone S, Baker KJ, Gerthoffer WT (2004) Synthesis of immune modulators by smooth muscles. Bioessays 26(6): 646–655PubMedCrossRefGoogle Scholar
  26. 26.
    Ghaffar O, Hamid Q, Renzi PM, Allakhverdi Z, Molet S, Hogg JC, Shore SA, Luster AD, Lamkhioued B (1999) Constitutive and cytokine-stimulated expression of eotaxin by human airway smooth muscle cells. Am J Respir Crit Care Med 159(6): 1933–1942PubMedGoogle Scholar
  27. 27.
    Kameyoshi Y, Dorschner A, Mallet AI, Christophers E, Schroder JM (1992) Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. J Exp Med 176(2): 587–592PubMedCrossRefGoogle Scholar
  28. 28.
    Wenzel SE, Trudeau JB, Barnes S, Zhou X, Cundall M, Westcott JY, McCord K, Chu HW (2002) TGF-beta and IL-13 synergistically increase eotaxin-1 production in human airway fibroblasts. J Immunol 169(8): 4613–4619PubMedGoogle Scholar
  29. 29.
    Maruo K, Akaike T, Ono T, Okamoto T, Maeda H (1997) Generation of anaphylatoxins through proteolytic processing of C3 and C5 by house dust mite protease. J Allergy Clin Immunol 100(2): 253–260PubMedCrossRefGoogle Scholar
  30. 30.
    Washburn RG, Bryant-Varela BJ, Julian NC, Bennett JE (1991) Differences in Cryptococcus neoformans capsular polysaccharide structure influence assembly of alternative complement pathway C3 convertase on fungal surfaces. Mol Immunol 28(4–5): 465–470PubMedCrossRefGoogle Scholar
  31. 31.
    Nilsson G, Johnell M, Hammer CH, Tiffany HL, Nilsson K, Metcalfe DD, Siegbahn A, Murphy PM (1996) C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. J Immunol 157(4): 1693–1698PubMedGoogle Scholar
  32. 32.
    Okumura S, Kashiwakura J, Tomita H, Matsumoto K, Nakajima T, Saito H, Okayama Y (2003) Identification of specific gene expression profiles in human mast cells mediated by Toll-like receptor 4 and FcepsilonRI. Blood 102(7): 2547–2554PubMedCrossRefGoogle Scholar
  33. 33.
    Selvan RS, Butterfield JH, Krangel MS (1994) Expression of multiple chemokine genes by a human mast cell leukemia. J Biol Chem 269(19): 13893–13898PubMedGoogle Scholar
  34. 34.
    Supajatura V, Ushio H, Nakao A, Akira S, Okumura K, Ra C, Ogawa H (2002) Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J Clin Invest 109(10):1351–1359PubMedCrossRefGoogle Scholar
  35. 35.
    Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K (2002) Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 196(12): 1645–1651PubMedCrossRefGoogle Scholar
  36. 36.
    Bieneman AP, Chichester KL, Chen YH, Schroeder JT (2005) Toll-like receptor 2 ligands activate human basophils for both IgE-dependent and IgE-independent secretion. J Allergy Clin Immunol 115(2): 295–301PubMedCrossRefGoogle Scholar
  37. 37.
    Shinkai K, Mohrs M, Locksley RM (2002) Helper T cells regulate type-2 innate immunity in vivo. Nature 420: 825–829PubMedCrossRefGoogle Scholar
  38. 38.
    Sherman MA, Secor VH, Lee SK, Lopez RD, Brown MA (1999) STAT6-independent production of IL-4 by mast cells. Eur J Immunol 29(4): 1235–1242PubMedCrossRefGoogle Scholar
  39. 39.
    Voehringer D, Shinkai K, Locksley RM (2004) Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20(3): 267–277PubMedCrossRefGoogle Scholar
  40. 40.
    Oliveira SH, Lukacs NW (2003) Stem cell factor: a hemopoietic cytokine with important targets in asthma. Curr Drug Targets Inflamm Allergy 2(4): 313–318PubMedCrossRefGoogle Scholar
  41. 41.
    Hogaboam C, Kunkel SL, Strieter RM, Taub DD, Lincoln P, Standiford TJ, Lukacs NW (1998) Novel role of transmembrane SCF for mast cell activation and eotaxin production in mast cell-fibroblast interactions. J Immunol 160(12): 6166–6171PubMedGoogle Scholar
  42. 42.
    Wang HW, Tedla N, Lloyd AR, Wakefield D, McNeil PH (1998) Mast cell activation and migration to lymph nodes during induction of an immune response in mice. J Clin Invest 102(8): 1617–1626PubMedCrossRefGoogle Scholar
  43. 43.
    Tedla N, Wang HW, McNeil HP, Di Girolamo N, Hampartzoumian T, Wakefield D, Lloyd A (1998) Regulation of T lymphocyte trafficking into lymph nodes during an immune response by the chemokines macrophage inflammatory protein (MIP)-1 alpha and MIP-1 beta. J Immunol 161(10): 5663–5672PubMedGoogle Scholar
  44. 44.
    Gauchat JF, Henchoz S, Mazzei G, Aubry JP, Brunner T, Blasey H, Life P, Talabot D, Flores-Romo L, Thompson J et al (1993) Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365: 340–343PubMedCrossRefGoogle Scholar
  45. 45.
    Pawankar R, Okuda M, Yssel H, Okumura K, Ra C (1997) Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J Clin Invest 99(7): 1492–1499PubMedGoogle Scholar
  46. 46.
    Nakajima T, Inagaki N, Tanaka H, Tanaka A, Yoshikawa M, Tamari M, Hasegawa K, Matsumoto K, Tachimoto H, Ebisawa M et al (2002) Marked increase in CC chemokine gene expression in both human and mouse mast cell transcriptomes following Fcepsilon receptor I cross-linking: an interspecies comparison. Blood 100(12): 3861–3868PubMedCrossRefGoogle Scholar
  47. 47.
    Wakahara S, Fujii Y, Nakao T, Tsuritani K, Hara T, Saito H, Ra C (2001) Gene expression profiles for Fc epsilon RI, cytokines and chemokines upon Fc epsilon RI activation in human cultured mast cells derived from peripheral blood. Cytokine 16(4): 143–152PubMedCrossRefGoogle Scholar
  48. 48.
    Rumsaeng V, Vliagoftis H, Oh CK, Metcalfe DD (1997) Lymphotactin gene expression in mast cells following Fc(epsilon) receptor I aggregation: modulation by TGF-beta, IL-4, dexamethasone, and cyclosporin A. J Immunol 158(3): 1353–1360PubMedGoogle Scholar
  49. 49.
    Baghestanian M, Hofbauer R, Kiener HP, Bankl HC, Wimazal F, Willheim M, Scheiner O, Fureder W, Muller MR, Bevec D et al (1997) The c-kit ligand stem cell factor and anti-IgE promote expression of monocyte chemoattractant protein-1 in human lung mast cells. Blood 90(11): 4438–4449PubMedGoogle Scholar
  50. 50.
    Packard KA, Khan MM (2003) Effects of histamine on Th1/Th2 cytokine balance. Int Immunopharmacol 3(7): 909–920PubMedCrossRefGoogle Scholar
  51. 51.
    Stephens R, Randolph DA, Huang G, Holtzman MJ, Chaplin DD (2002) Antigen-nonspecific recruitment of Th2 cells to the lung as a mechanism for viral infection-induced allergic asthma. J Immunol 169(10): 5458–5467PubMedGoogle Scholar
  52. 52.
    Matsushima H, Yamada N, Matsue H, Shimada S (2004) TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol 173(1): 531–541PubMedGoogle Scholar
  53. 53.
    Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD (2004) Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 114(1): 174–182PubMedCrossRefGoogle Scholar
  54. 54.
    Nagase H, Okugawa S, Ota Y, Yamaguchi M, Tomizawa H, Matsushima K, Ohta K, Yamamoto K, Hirai K (2003) Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J Immunol 171(8): 3977–3982PubMedGoogle Scholar
  55. 55.
    Olszewska-Pazdrak B, Casola A, Saito T, Alam R, Crowe SE, Mei F, Ogra PL, Garofalo RP (1998) Cell-specific expression of RANTES, MCP-1, and MIP-1alpha by lower airway epithelial cells and eosinophils infected with respiratory syncytial virus. J Virol 72(6): 4756–4764PubMedGoogle Scholar
  56. 56.
    Ono SJ, Nakamura T, Miyazaki D, Ohbayashi M, Dawson M, Toda M (2003) Chemokines: roles in leukocyte development, trafficking, and effector function. J Allergy Clin Immunol 111(6): 1185–1199PubMedCrossRefGoogle Scholar
  57. 57.
    Trifilo MJ, Lane TE (2004) The CC chemokine ligand 3 regulates CD11c+CD11b+CD8alpha dendritic cell maturation and activation following viral infection of the central nervous system: implications for a role in T cell activation. Virology 327(1): 8–15PubMedCrossRefGoogle Scholar
  58. 58.
    Trifilo MJ, Bergmann CC, Kuziel WA, Lane TE (2003) CC chemokine ligand 3 (CCL3) regulates CD8(+)-T-cell effector function and migration following viral infection. J Virol 77(7): 4004–4014PubMedCrossRefGoogle Scholar
  59. 59.
    Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B (1996) Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 156(1): 322–327PubMedGoogle Scholar
  60. 60.
    Dorner BG, Scheffold A, Rolph MS, Huser MB, Kaufmann SH, Radbruch A, Flesch IE, Kroczek RA (2002) MIP-1alpha, MIP-1beta, RANTES, and ATAC/lymphotactin function together with IFN-gamma as type 1 cytokines. Proc Natl Acad Sci USA 99(9): 6181–6186PubMedCrossRefGoogle Scholar
  61. 61.
    Tekkanat KK, Maassab H, Miller A, Berlin AA, Kunkel SL, Lukacs NW (2002) RANTES (CCL5) production during primary respiratory syncytial virus infection exacerbates airway disease. Eur J Immunol 32(11): 3276–3284PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Zamaneh Mikhak
    • 1
  • Andrew D. Luster
    • 1
  1. 1.Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and ImmunologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownUSA

Personalised recommendations