CCR5 antagonists: from discovery to clinical efficacy

  • Shon R. Pulley
Part of the Progress in Inflammation Research book series (PIR)


CCR5 is a prototypically inflammatory chemokine receptor belonging to the seven transmembrane G-protein-coupled receptor (GPCR) family. This family is generally considered druggable and well represented in marketed drugs [1]–[6]. The CCR5 receptor is expressed on numerous host defense cells including monocytes, macrophages, T-lymphocytes, dendritic cells and microglia [4, 5]. Interaction of CCR5 with its ligands MIP-1α, MIP-1β (CCL3/CCL4) or RANTES (CCL5) results in a conformational change in the seven transmembrane domain initiating a signaling cascade through heterotrimeric G-proteins ultimately giving rise to migration of immune cells to sites of inflammation [2, 5]. Due to the well documented role of CCR5 in the immune system, it has been implicated in the pathophysiology of rheumatoid arthritis (RA), multiple sclerosis (MS), transplant rejection, gastric disorders, diabetes and myeloma [7]. Perhaps the biggest driver behind the development of CCR5 receptor antagonists was the discovery that CCR5 plays an important role as a co-receptor for macrophage tropic HIV-1 strains to facilitate viral fusion and entry into host cells [5], [8]–[12]. In addition, individuals with a mutation in the CCR5 gene (CCR5Δ32) lacking expression of CCR5 on the cell surface are resistance to HIV-1 infection without notable immune system effects [13, 14], thus validating pharmaceutical intervention with a CCR5 antagonist.


Human Immunodeficiency Virus Type Chemokine Receptor Antimicrob Agent CCR5 Receptor CCR5 Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gao Z, Metz W (2003) Unraveling the chemistry of chemokine receptor ligands. Chem Rev 103(9): 3733–3752PubMedCrossRefGoogle Scholar
  2. 2.
    Pease J, Williams T (2006) The attraction of chemokines as a target for specific antiinflammatory therapy. Brit J Pharmacol 147(Suppl 1): S212–S221CrossRefGoogle Scholar
  3. 3.
    Wells T, Power C, Shaw J, Proudfoot A (2006) Chemokine blockers — therapeutics in the making? Trends in Pharmacol Sci 27(1): 41–47CrossRefGoogle Scholar
  4. 4.
    Mueller A, Strange PG (2004) The chemokine receptor, CCR5. Intl J Biochem & Cell Biol 36(1): 35–38CrossRefGoogle Scholar
  5. 5.
    Lederman MM, Penn-Nicholson A, Cho M, Mosier D (2006) Biology of CCR5 and its role in HIV infection and treatment. JAMA 296(7): 815–826PubMedCrossRefGoogle Scholar
  6. 6.
    a) Wise A, Gearing K, Rees S (2002) Target validation of G-protein coupled receptors. Drug Discov Today 7(4): 235–246 b) Hopkins AL, Groom CR (2002) Opinion: The druggable genome. Nat Rev Drug Discov 1(9): 727–730PubMedCrossRefGoogle Scholar
  7. 7.
    Ribeiro S, Horuk R (2005) The clinical potential of chemokine receptor antagonists. Pharmacol & Therapeutics 107(1): 44–58CrossRefGoogle Scholar
  8. 8.
    Kazmierski W, Bifulco N, Yang H, Boone L, DeAnda F, Watson C, Kenakin T (2003) Recent progress in discovery of small-molecule CCR5 chemokine receptor ligands as HIV-1 inhibitors. Bioorg & Med Chem 11(13): 2663–2676CrossRefGoogle Scholar
  9. 9.
    Kazmierski WM, Peckham JP, Duan M, Kenakin TP, Jenkinson S, Gudmundsson KS, Piscitelli SC, Feldman PL (2005) Recent progress in the discovery of new CCR5 and CXCR4 chemokine receptor antagonists as inhibitors of HIV-1 entry. Part 2. Curr Med Chem: Anti-Infective Agents 4(2): 133–152CrossRefGoogle Scholar
  10. 10.
    Kazmierski WM, Kenakin TP, Gudmundsson KS (2006) Peptide, peptidomimetic and small-molecule drug discovery targeting HIV-1 host-cell attachment and entry through gp120, gp41, CCR5 and CXCR4. Chem Bio & Drug Design 67(1): 13–26CrossRefGoogle Scholar
  11. 11.
    Reeves JD, Piefer AJ (2005) Emerging drug targets for antiretroviral therapy. Drugs 65(13): 1747–1766PubMedCrossRefGoogle Scholar
  12. 12.
    Castagna A, Biswas P, Beretta A, Lazzarin A (2005) The appealing story of HIV entry inhibitors: from discovery of biological mechanisms to drug development. Drugs 65(7): 879–904PubMedCrossRefGoogle Scholar
  13. 13.
    Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86(3): 367–377PubMedCrossRefGoogle Scholar
  14. 14.
    Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR (1997) Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med 185(4): 621–628PubMedCrossRefGoogle Scholar
  15. 15.
    Mack M, Luckow B, Nelson PJ, Cihak J, Simmons G, Clapham PR, Signoret N, Marsh M, Stangassinger M, Borlat F et al (1998) Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med 187(8): 1215–1224PubMedCrossRefGoogle Scholar
  16. 16.
    Kawamura T, Bruce SE, Abraha A, Sugaya M, Hartley O, Offord RE, Arts EJ, Zimmerman PA, Blauvelt A (2004) PSC-RANTES blocks R5 human immunodeficiency virus infection of langerhans cells isolated from individuals with a variety of CCR5 diplotypes. J Virol 78(14): 7602–7609PubMedCrossRefGoogle Scholar
  17. 17.
    Trkola A, Ketas TJ, Nagashima KA, Zhao L, Cilliers T, Morris L, Moore JP, Maddon PJ, Olson WC (2001) Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140. J Virol 75(2): 579–588PubMedCrossRefGoogle Scholar
  18. 18.
    a) Roschke V, Clark S, Branco L, Kanakaraj P, Kaufman T, Yao X, Nardelli B, Shi Y, Cai W, Ullrich A et al (2004) Characterization of a panel of novel human monoclonal antibodies that specifically antagonize CCR5 and block HIV-1 entry. 44th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) Abstract #2871 b) Lalezari J, Lederman PM, Dejesus E, Searle J, Cai W, Roschke V, Zhong J, Hicks C, Freimuth W, Subramanian M (2006) A phase 1, dose-escalation, placebo-controlled study of a fully human monoclonal antibody (CCR5mAb004) against CCR5 in patients with CCR5-tropic HIV-1 infection. Forty-Sixth Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, abstract H-1668Google Scholar
  19. 19.
    Watson C, Jenkinson S, Kazmierski W, Kenakin T (2005) The CCR5 receptor based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor. Mol Pharmacol 67: 1268–1282PubMedCrossRefGoogle Scholar
  20. 20.
    a) Princen K, Hatse S, Vermeire K, Aquaro S, De Clercq E, Gerlach LO, Rosenkilde M, Schwartz TW, Skerlj R, Bridger G et al (2004) Inhibition of human immunodeficiency virus replication by a dual CCR5 /CXCR4 antagonist. J Virol 78(23): 12996–13006 b) Zhou Y, Bridger GJ, Skerlj RT, Bogucki D, Yang W, Bourque E, Langille J, Li TS, Metz M (2005) Preparation of acylaminoalkylpiperidinamines as CCR5 chemokine receptor ligands. US Pat Appl Publ US 2005277668 A1PubMedCrossRefGoogle Scholar
  21. 21.
    Palani A, Tagat JR (2006) Discovery and development of small-molecule chemokine coreceptor CCR5 antagonists. J Med Chem 49(10): 2851–2857PubMedCrossRefGoogle Scholar
  22. 22.
    a) Bondensgaard K, Ankersen M, Thogersen H, Hansen BS, Wulff BS, Bywater RP (2004) Recognition of privileged structures by G-protein coupled receptors. J Med Chem 47(4): 888–899 b) von Korff M, Steger M (2004) GPCR-tailored pharmacophore pattern recognition of small molecular ligands. J Chem Inf Comp Sci 44(3): 1137–1147PubMedCrossRefGoogle Scholar
  23. 23.
    Burrows JN, Cumming JG, Fillery SM, Hamlin GA, Hudson JA, Jackson RJ, McLaughlin S, Shaw JS (2005) Modulators of the human CCR5 receptor. Part 1: Discovery and initial SAR of 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas. Bioorg Med Chem Lett 15(1): 25–28PubMedCrossRefGoogle Scholar
  24. 24.
    Cumming JG, Cooper AE, Grime K, Logan CJ, McLaughlin S, Oldfield J, Shaw JS, Tucker H, Winter J, Whittaker D (2005) Modulators of the human CCR5 receptor. Part 2: SAR of substituted 1-(3,3-diphenylpropyl)-piperidinyl phenylacetamides. Bioorg Med Chem Lett 15(22): 5012–5015PubMedCrossRefGoogle Scholar
  25. 25.
    Thoma G, Nuninger F, Schaefer M, Akyel KG, Albert R, Beerli C, Bruns C, Francotte E, Luyten M, MacKenzie D et al (2004) Orally bioavailable competitive CCR5 antagonists. J Med Chem 47(8): 1939–1955PubMedCrossRefGoogle Scholar
  26. 26.
    Dorn CP, Finke PE, Oates B, Budhu RJ, Mills SG, MacCoss M, Malkowitz L, Springer MS, Daugherty BL, Gould SL et al (2001) Antagonists of the human CCR5 receptor as anti-HIV-1 agents. Part 1: Discovery and initial structure-activity relationships for 1-amino-2-phenyl-4-(piperidin-1-yl)butanes. Bioorg Med Chem Lett 11(2): 259–264PubMedCrossRefGoogle Scholar
  27. 27.
    Mills SG, DeMartino JA (2004) Chemokine receptor-directed agents as novel anti-HIV-1 therapies. Curr Topics Med Chem 4(10): 1017–1033CrossRefGoogle Scholar
  28. 28.
    Finke PE, Meurer LC, Oates B, Shah SK, Loebach JL, Mills SG, MacCoss M, Castonguay L, Malkowitz L, Springer MS et al (2001) Antagonists of the human CCR5 receptor as anti-HIV-1 agents. Part 3: A proposed pharmacophore model for 1-[N-(methyl)-N-(phenylsulfonyl)amino].-2-(phenyl)-4-[4-(substituted)piperidin-1-yl].butanes. Bioorg Med Chem Lett 11(18): 2469–2473 b) Castonguay LA, Weng Y, Adolfsen W, Di Salvo J, Kilburn R, Caldwell CG, Daugherty BL, Finke PE, Hale JJ, Lynch CL et al (2003) Binding of 2-aryl-4-(piperidin-1-yl)butanamines and 1,3,4-trisubstituted pyrrolidines to human CCR5: A molecular modeling-guided mutagenesis study of the binding pocket. Biochemistry 42(6): 1544–1550PubMedCrossRefGoogle Scholar
  29. 29.
    a) Shen DM, Shu M, Mills SG, Chapman KT, Malkowitz L, Springer MS, Gould SL, DeMartino JA, Siciliano SJ, Kwei GY et al (2004) Antagonists of human CCR5 receptor containing 4-(pyrazolyl)piperidine side chains. Part 1: Discovery and SAR study of 4-pyrazolylpiperidine side chains. Bioorg Med Chem Lett 14(4): 935–939 b) Shen DM, Shu M, Willoughby CA, Shah S, Lynch CL, Hale JJ, Mills SG, Chapman KT, Malkowitz L, Springer MS et al (2004) Antagonists of human CCR5 receptor containing 4-(pyrazolyl)piperidine side chains. Part 2: Discovery of potent, selective, and orally bioavailable compounds. Bioorg Med Chem Lett 14(4): 941–945 c) Shu M, Loebach JL, Parker KA, Mills SG, Chapman KT, Shen DM, Malkowitz L, Springer MS, Gould SL, DeMartino JA et al (2004) Antagonists of human CCR5 receptor containing 4-(pyrazolyl)piperidine side chains. Part 3: SAR studies on the benzylpyrazole segment. Bioorg Med Chem Lett 14(4): 947–952PubMedCrossRefGoogle Scholar
  30. 30.
    Finke PE, Loebach JL, Parker KA, Plummer CW, Mills SG (2005) Preparation of amino acid N-cyclopentyl modulators of chemokine receptor activity. US Pat Appl Publ US 2005070609 A1Google Scholar
  31. 31.
    Veazey RS, Klasse PJ, Schader SM, Hu Q, Ketas TJ, Lu M, Marx PA, Dufour J Colonno RJ, Shattock RJ et al (2005) Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion. Nature 438(7064): 99–102PubMedCrossRefGoogle Scholar
  32. 32.
    DeMartino JA (2006) CCR5 Blockade modulates alloimmunity in primates. Abstracts of Papers, 231st ACS National Meeting, Atlanta, GA, US, March 26–30, MEDI-193Google Scholar
  33. 33.
    a) Baba M, Nishimura O, Kanzaki N, Okamoto M, Sawada H, Iizawa Y, Shiraishi M, Aramaki Y, Okonogi K Ogawa Y et al (2000) A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Nat Acad Sci USA 96(10): 5698–5703 b) Shiraishi M, Aramaki Y, Seto M, Imoto H, Nishikawa Y, Kanzaki N, Okamoto M, Sawada H, Nishimura O, Baba M et al (2000) Discovery of novel, potent, and selective small-molecule CCR5 antagonists as anti-HIV-1 agents: synthesis and biological evaluation of anilide derivatives with a quaternary ammonium moiety. J Med Chem 43(10): 2049–2063 c) Kanzaki N, Shiraishi M, Lizawa Y, Baba M, Nishimura O, Fujino M (2000) TAK-779 anti-HIV chemokine CCR5 antagonist. Drugs of the Future 25(3): 252–258CrossRefGoogle Scholar
  34. 34.
    Baba M, Takashima K, Miyake H, Kanzaki N, Teshima K, Wang X, Shiraishi M, Iizawa Y (2005) TAK-652 inhibits CCR5-mediated human immunodeficiency virus type 1 infection in vitro and has favorable pharmacokinetics in humans. Antimicrob Agents Chemother 49(11): 4584–4591PubMedCrossRefGoogle Scholar
  35. 35.
    Takashima K, Miyake H, Kanzaki N, Tagawa Y, Wang X, Sugihara Y, Iizawa Y, Baba M (2005) Highly potent inhibition of human immunodeficiency virus type 1 replication by TAK-220, an orally bioavailable small-molecule CCR5 antagonist. Antimicrob Agents Chemother 49(8): 3474–3482PubMedCrossRefGoogle Scholar
  36. 36.
    Nishikawa M, Takashima K, Nishi T, Furuta RA, Kanzaki N, Yamamoto Y, Fujisawa J (2005) Analysis of binding sites for the new small-molecule CCR5 antagonist TAK-220 on human CCR5. Antimicrob Agents Chemother 49(11): 4708–4715PubMedCrossRefGoogle Scholar
  37. 37.
    Tremblay CL, Giguel F, Guan Y, Chou TC, Takashima K, Hirsch MS (2005) TAK-220, a novel small-molecule CCR5 antagonist, has favorable anti-human immunodeficiency virus interactions with other antiretrovirals in vitro. Antimicrob Agents Chemother 49(8): 3483–3485PubMedCrossRefGoogle Scholar
  38. 38.
    a) Kazmierski WM, Aquino CJ, Bifulco N, Boros EE, Chauder BA, Chong PY, Duan M, Deanda F, Koble CS, Mclean EW et al (2004) Prepn of benzimidazolyl azabicyclooctyl ethylpiperidines as CCR5 antagonists for the treatment of HIV infection. PCT Int Appl WO 2004054974 A2 b) Duan M, Kazmierski WM, Aquino CJ (2004) Preparation of heterocyclylalkyl substituted cyclohexyl compounds as CCR5 antagonists. PCT Int Appl WO 2004054581 A2Google Scholar
  39. 39.
    Kazmierski WM, Anderson DL, Aquino CJ, Bifulco N, Boone LR, Boros EE, Chauder BA, Chong PY, Duan M, Ferris RG et al (2006) Novel, potent and bioavailable CCR5 chemokine receptor small-molecule antagonists for HIV therapy: Scaffold discovery and addressing hERG ion channel affinity in the process of optimizing potency and bioavailability. Abstracts of Papers, 232nd ACS National Meeting, San Francisco, CA, US, Sept. 10–14, 2006 MEDI-297Google Scholar
  40. 40.
    a) Xue CB, Cao G, Huang T, Chen L, Zhang K, Wang A, Meloni D, Anand R, Glenn J, Metcalf BW (2005) Preparation of piperazinylpiperidine derivatives as chemokine receptor antagonists. US Pat Appl Publ US 2005261310 A1 b) IDdb (2006) INCB-9471. The Investigational Drugs Database Drug reportGoogle Scholar
  41. 41. Scholar
  42. 42.
    Maeda K, Nakata H, Koh Y, Miyakawa T, Ogata H, Takaoka Y, Shibayama S, Sagawa K, Fukushima D, Moravek J et al (2004) Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J Virol 78(16): 8654–8662PubMedCrossRefGoogle Scholar
  43. 43.
    Strizki JM, Tremblay C, Xu S, Wojcik L, Wagner N, Gonsiorek W, Hipkin RW, Chou CC, Pugliese-Sivo C, Xiao Y et al (2005). Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrob Agents Chemother 49(12): 4911–4919PubMedCrossRefGoogle Scholar
  44. 44.
    a) Wood A, Armour D (2005) The discovery of the CCR5 receptor antagonist, UK-427,857, a new agent for the treatment of HIV infection and AIDS. Prog Med Chem 43: 239–271 b) Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, Macartney M, Mori J, Rickett G, Smith-Burchnell C, Napier C et al (2005) Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother 49(11): 4721–4732PubMedCrossRefGoogle Scholar
  45. 45.
    Maeda K, Yoshimura K, Shibayama S, Habashita H, Tada H, Sagawa K, Miyakawa T, Aoki M, Fukushima D, Mitsuya H (2001) Novel low molecular weight spirodiketopiperazine derivatives potently inhibit R5 HIV-1 infection through their antagonistic effects on CCR5. J Biol Chem 276(37): 35194–35200PubMedCrossRefGoogle Scholar
  46. 46.
    Adkison KK, Shachoy-Clark A, Fang L, Lou Y, Otto VR, Berrey MM, Piscitelli SC (2006) The effects of ritonavir and lopinavir/ritonavir on the pharmacokinetics of a novel CCR5 antagonist, aplaviroc, in healthy subjects. British J Clinical Pharmacol 62(3): 336–344CrossRefGoogle Scholar
  47. 47.
    Lalezari J, Thompson M, Kumar P, Piliero P, Davey R, Patterson K, Shachoy-Clark A, Adkison K, Demarest J, Lou Y et al (2005) Antiviral activity and safety of 873140, a novel CCR5 antagonist, during short-term monotherapy in HIV-infected adults. AIDS 19(14): 1443–1448PubMedCrossRefGoogle Scholar
  48. 48.
    Adkison KK, Shachoy-Clark A, Fang L, Lou Y, O’Mara K, Berrey MM, Piscitelli SC (2005) Pharmacokinetics and short-term safety of 873140, a novel CCR5 antagonist, in healthy adult subjects. Antimicrob Agents Chemother 49(7): 2802–2806PubMedCrossRefGoogle Scholar
  49. 49.
    a) GlaxoSmithKline (2005) Statement to HIV patient community: information from GlaxoSmithKline on changes to studies of investigational CCR5 entry inhibitor Aplaviroc (GW873140). 15 September 2005 b) IDdb (2006) Aplaviroc. The Investigational Drugs Database Drug reportsGoogle Scholar
  50. 50.
    a) Palani A, Shapiro S, Clader JW, Greenlee WJ, Cox K, Strizki J, Endres M, Baroudy BM (2001) Discovery of 4-[(Z)-(4-Bromophenyl)(ethoxyimino)methyl].-1’-[(2,4-dimethyl-3-pyridinyl)carbonyl].-4’-methyl-1,4’-bipiperidine N-Oxide (SCH 351125): An orally bioavailable human CCR5 antagonist for the treatment of HIV infection. J Med Chem 44(21): 3339–3342 b) Strizki JM, Xu S, Wagner NE, Wojcik L, Liu J, Hou Y, Endres M, Palani A, Shapiro S, Clader JW et al (2001) SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Nat Acad Sci 98(22): 12718–12723PubMedCrossRefGoogle Scholar
  51. 51.
    a) Tagat JR, McCombie SW, Steensma RW, Lin SI, Nazareno DV, Baroudy B, Vantuno N, Xu S, Liu J (2001) Piperazine-based CCR5 antagonists as HIV-1 inhibitors. I: 2 (S)-methyl piperazine as a key pharmacophore element. Bioorg Med Chem Lett 11(16): 2143–2146 b) Tagat JR, Steensma RW, McCombie SW, Nazareno DV, Lin SI, Neustadt BR, Cox K, Xu S, Wojcik L, Murray MG et al (2001) Piperazine-based CCR5 antagonists as HIV-1 inhibitors. II. discovery of 1-[(2,4-dimethyl-3-pyridinyl)carbonyl].-4-methyl-4-[3(S)-methyl-4-[1(S)-[4-(trifluoro-methyl)phenyl].ethyl].-1-piperazinyl].-piperidine N1-oxide (Sch-350634), an orally bioavailable, potent CCR5 antagonist. J Med Chem 44(21): 3343–3346PubMedCrossRefGoogle Scholar
  52. 52.
    a) McCombie SW, Tagat JR, Vice SF, Lin SI, Steensma R, Palani A, Neustadt BR, Baroudy BM, Strizki JM, Endres M et al (2003) Piperazine-based CCR5 antagonists as HIV-1 inhibitors. III: synthesis, antiviral and pharmacokinetic profiles of symmetrical heteroaryl carboxamides. Bioorg Med Chem Lett 13(3): 567–571 b) Tagat JR, McCombie SW, Nazareno D, Labroli MA, Xiao Y, Steensma RW, Strizki JM, Baroudy BM, Cox K, Lachowicz J et al (2004) Piperazine-based CCR5 antagonists as HIV-1 inhibitors. IV. Discovery of 1-[(4,6-dimethyl-5-pyrimidinyl)carbonyl].-4-[4-2-methoxy-1(R)-4-(trifluoromethyl)phenylethyl-3(S)-methyl-1-piperazinyl].-4-methylpiperidine (Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonist. J Med Chem 47(10): 2405–2408PubMedCrossRefGoogle Scholar
  53. 53.
    a) Schurmann D et al (2004) SCH D: antiviral activity of a CCR5 receptor antagonist. Eleventh Conference on Retroviruses and Opportunistic Infections, San Francisco, abstract 140LB b) Scholar
  54. 54.
    a) Thomson-PharmaSM Drug Report; 2006 Vicriviroc. b) Greaves W, Landovitz R, Fatkenheuer G et al (2004) Late virologic breakthrough in treatment-naive patients on a regimen of Combivar + Vicriviroc. Proceedings of the 11th Conference on Retroviruses and Opportunistic Infections. San Francisco, CA, USA, 8–11 February 2004 (Abstract 161LB)Google Scholar
  55. 55.
    a) Gulick R, Su Z, Flexner C et al (2006) ACTG 5211: Phase II study of the safety and efficacy of Vicriviroc in HIV-infected treatment-experienced subjects. 16th International AIDS Conference. 13–18 August 2006. Toronto, Canada. Abstract THLB0217 b) Schering-Plough. Vicriviroc demonstrates potent and sustained viral suppression in ACTG Phase II clinical study in treatment-experienced HIV patients. Press Release 17 August 2006 c) For additional information on the VICTOR-E1 trial, see http://www.clinicaltrials.govGoogle Scholar
  56. 56.
    Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci 96(18): 9997–10002PubMedCrossRefGoogle Scholar
  57. 57.
    Fermini B, Fossa AA (2003) The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov 2(6): 439–447PubMedCrossRefGoogle Scholar
  58. 58.
    Overton ET, Powderly WG (2006) Future of Maraviroc and other CCR5 antagonists. Future Virology 1(5): 605–613CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Shon R. Pulley
    • 1
  1. 1.Discovery Chemistry & Research TechnologiesEli Lilly and Company, Lilly Corporate CenterIndianapolisUSA

Personalised recommendations