Chemokine axes in hematopoietic stem cell mobilization

  • Louis M. Pelus
  • Hal E. Broxmeyer
Part of the Progress in Inflammation Research book series (PIR)


Under steady state, hematopoietic cells at all stages of differentiation and some lymphoid cell populations are confined within the bone marrow, while mature cells exit and enter peripheral blood. A small population of hematopoietic stem (HSC) and progenitor (HPC) cells also traffic through the peripheral circulation. The initial observations that HPC cells are found in the blood of patients recovering from chemotherapy [1, 2, 3] led to the realization that HSC and HPC can be forced or ‘mobilized’ from marrow to blood where they can be collected by apheresis and utilized for transplantation [4].


Peripheral Blood Stem Cell Hematopoietic Progenitor Cell Stem Cell Mobilization CXCR4 Antagonist Rapid Mobilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McCredie KB, Hersch EM, Freireich EJ (1971) Cells capable of colony formation in the peripheral blood of man. Science 171: 293–294PubMedCrossRefGoogle Scholar
  2. 2.
    Kurnick JE, Robinson WA (1971) Colony growth of human peripheral white blood cells in vitro. Blood 37: 136–141PubMedGoogle Scholar
  3. 3.
    Chervenick PA, Boggs DR (1971) In vitro growth of granulocytic and mononuclear cell colonies from blood of normal individuals. Blood 37: 131–135PubMedGoogle Scholar
  4. 4.
    To LB, Haylock DN, Simmons PJ, Juttner CA (1997) The biology and clinical uses of blood stem cells. Blood 89: 2233–2258PubMedGoogle Scholar
  5. 5.
    Kessinger A, Armitage JO (1991) The evolving role of autologous peripheral blood stem cell transplantation following high-dose therapy for malignancies. Blood 77: 211–213PubMedGoogle Scholar
  6. 6.
    Papayannopoulou T (2004) Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 103: 1580–1585PubMedCrossRefGoogle Scholar
  7. 7.
    Fruehauf S, Seggewiss R (2003) Its moving day: factors affecting peripheral blood stem cell mobilization and strategies for improvement. Br J Haematol 122: 360–375PubMedCrossRefGoogle Scholar
  8. 8.
    Thomas J, Liu F, Link DC (2002) Mechanisms of mobilization of hematopoietic progenitors with granulocyte colony-stimulating factor. Curr Opin Hematol 9: 183–189PubMedCrossRefGoogle Scholar
  9. 9.
    Goldman JM, Horowitz MM (2002) The international bone marrow registry. Int J Hematol 76: 393–397PubMedCrossRefGoogle Scholar
  10. 10.
    Ringden O, Remberger M, Runde V, Bornhausser M, Blau IW, Basara N, Holig K, Beelen DW, Hagglund H, Basu O et al (2000) Faster engraftment of neutrophils and platelets with peripheral blood stem cells from unrelated donors: a comparison with marrow transplantation. Bone Marrow Transplant 26: 6–8CrossRefGoogle Scholar
  11. 11.
    Benito AI, Diaz MA, Gonzales-Vicent M, Sevilla J, Madero L (2004) Hematopoietic stem cell transplantation using umbilical cord blood progenitors: review of current clinical results. Bone Marrow Transplant 33: 675–690PubMedCrossRefGoogle Scholar
  12. 12.
    Bensinger W, Singer J, Appelbaum FR, Lilleby K, Longin K, Rowley S, Clarke E, Clift R, Hansen J, Shields T et al (1993) Autologous transplantation with peripheral blood mononuclear cells collected after administration of recombinant granulocyte stimulating factor. Blood 81: 3158–3163PubMedGoogle Scholar
  13. 13.
    Blume KG, Thomas ED (2000) A review of autologous hematopoietic cell transplantation. Biol Bone Marrow Transplant 6: 1–12CrossRefGoogle Scholar
  14. 14.
    Kennedy J (1998) Peripheral blood progenitor cell mobilization: A clinical review. Pharmacotherapy 18: 3–8Google Scholar
  15. 15.
    Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G (1996) Filgrastim (rmetHuG-CSF): The first 10 years. Blood 88: 1907–1929PubMedGoogle Scholar
  16. 16.
    Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F, Ruggeri L, Barbabietola G, Aristei C, Latini P et al (1998) Treatment of high risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Eng J Med 339: 1186–1193CrossRefGoogle Scholar
  17. 17.
    Reisner Y, Martelli MF (2000) Transplantation tolerance induced by “mega dose” CD34+ cell transplants. Exp Hematol28: 119–127PubMedCrossRefGoogle Scholar
  18. 18.
    Bachar-Lustig E, Li HW, Gur H, Krauthgamer R, Marcus H, Reisner Y (1999) Induction of donor-type chimerism and transplantation tolerance across major histocompatibility barriers in sublethally irradiated mice by Sca-1+Linbone marrow progenitor cells: Synergisms with non-alloreactive (host x donor) F1 T cells. Blood 94: 3212–3221PubMedGoogle Scholar
  19. 19.
    Stiff P, Gingrich R, Luger S, Wyres MR, Brown RA, Lemaistre CF, Perry J, Schenkein DP, List A, Mason JR et al (2000) A randomized phase 2 study of PBPC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin’s disease or non-Hodgkin’s lymphoma. Bone Marrow Transplant 26: 471–481PubMedCrossRefGoogle Scholar
  20. 20.
    Croop JM, Cooper R, Fernandez C, Graves V, Kreissman S, Hanenberg H, Smith FO, Williams DA (2001) Mobilization and collection of peripheral blood CD34+ cells from patients with Fanconi anemia. Blood 98: 2917–2921PubMedCrossRefGoogle Scholar
  21. 21.
    Anderlini P, Przepiorka D, Seong C, Smith TL, Huh YO, Lauppe J, Champlin R, Kärbling M (1997) Factors affecting mobilization of CD34+ cells in normal donors treated with filgrastim. Transfusion 37: 507–512PubMedCrossRefGoogle Scholar
  22. 22.
    Schmitz N, Dreger P, Suttorp M, Rohwedder EB, Haferlach T, Löffler H, Hunter A, Russell NH (1995) Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by Filgrastim (Granulocyte Colony-Stimulating Factor). Blood 85: 1666–1672PubMedGoogle Scholar
  23. 23.
    Lataillade JJ, Clay D, Dupuy C, Rigal S, Jasmin C, Bourin P, Bousse-Kerdiles M-CL (2000) Chemokine SDF-1 enhances circulating CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood 95: 756–768PubMedGoogle Scholar
  24. 24.
    Broxmeyer HE, Kohli L, Kim CH, Lee Y, Mantel C, Cooper S, Hangoc G, Shaheen M, Li X, Clapp DW (2003) Stromal cell derived factor-1/CXCL12 enhances survival/antiapoptosis of hematopoietic stem and progenitor cells: direct effects mediated through CXCR4 and Gαi proteins. J Leukocyte Biol 73: 630–638PubMedCrossRefGoogle Scholar
  25. 25.
    Broxmeyer HE, Cooper S, Kohli L, Hangoc G, Lee YH, Mantel C, Clapp DW, Kim CH (2003) Transgenic expression of stromal cell derived factor-1/CXCL12 enhances myeloid progenitor cell survival/anti-apoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis. J Immunol 170: 421–429PubMedGoogle Scholar
  26. 26.
    Lee Y, Gotoh, Kwon HJ, You M, Kohli L, Mantel C, Cooper S, Hangoc G, Miyazawa K, Ohyashiki K, Broxmeyer HE (2002) Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines. Blood 99: 4307–4317PubMedCrossRefGoogle Scholar
  27. 27.
    Lataillade JJ, Clay D, Bourin P, Herodin F, Dupuy C, Jasmin C, Le Bousse-Kerdiles MC (2002) Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G0/G1 transition in CD34+ cells: evidence for an autocrine/paracrine mechanism. Blood 99: 1117–1129PubMedCrossRefGoogle Scholar
  28. 28.
    Broxmeyer HE, Cooper S, Hangoc G, Kim KC (2005) Stromal cell-derived factor-1/CXCL12 selectively counteracts inhibitory effects of myelosuppressive chemokines on hematopoietic progenitor cell proliferation in vitro. Stem Cells Dev 14: 199–203PubMedCrossRefGoogle Scholar
  29. 29.
    Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC (1997) provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185: 111–120PubMedCrossRefGoogle Scholar
  30. 30.
    Kim CH, Broxmeyer HE (1998) In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: Stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood 91: 100–110PubMedGoogle Scholar
  31. 31.
    Möhle R, Bautz F, Rafi S, Moore MAS, Brugger W, Kanz L (1998) The chemokine receptor CXCR4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91: 4523–4530PubMedGoogle Scholar
  32. 32.
    Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283: 845–848PubMedCrossRefGoogle Scholar
  33. 33.
    Lapidot T, Kollet O (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/β2mnull mice. Leukemia 16: 1992–2203PubMedCrossRefGoogle Scholar
  34. 34.
    Christopherson KW II, Hangoc G, Mantel CR, Broxmeyer HE (2004) Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305: 1000–1003PubMedCrossRefGoogle Scholar
  35. 35.
    Guo Y, Hangoc G, Bian H, Pelus LM, Broxmeyer HE (2005) SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cells 23: 1324–1332PubMedCrossRefGoogle Scholar
  36. 36.
    Lord BI, Woolford LB, Wood LM, Czaplewski LG, McCourt M, Hunter MG, Edwards RM (1995) Mobilization of early hematopoietic progenitor cells with BB-10010: A genetically engineered variant of human macrophage inflammatory protein-1α. Blood 85: 3412–3415PubMedGoogle Scholar
  37. 37.
    Broxmeyer HE, Orazi A, Hague NL, Sledge GW Jr., Rasmussen H, Gordon MS (1998) Myeloid progenitor cell proliferation and mobilization effects of BB10010, a genetically engineered variant of human macrophage inflammatory protein-1α, in a phase I clinical trial in patients with relapsed/refractory breast cancer. Blood Cells, Molec, and Dis 24: 14–30CrossRefGoogle Scholar
  38. 38.
    Broxmeyer HE, Cooper S, Hangoc G, Gao J-L, Murphy PM (1999) Dominant myelopoietic effector functions mediated by chemokine receptor CCR1. J Exp Med 189: 1987–1992PubMedCrossRefGoogle Scholar
  39. 39.
    Laterveer L, Lindley IJD, Hamilton MS, Willemze R, Fibbe WE (1995) Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood 85: 2269–2275PubMedGoogle Scholar
  40. 40.
    Fibbe WE, Pruijt JFM, Velders G, Opdenakker G, van Kooyk Y, Figdor CG, Willemze R (1999) Biology of IL-8-induced stem cell mobilization. Annals NY Acad Sci 872: 71–82CrossRefGoogle Scholar
  41. 41.
    Laterveer L, Zijlmans JMJM, Lindley IJD, Hamilton MS, Willemze R, Fibbe WE (1996) Improved survival of lethally irradiated recipient mice transplanted with circulating progenitor cells mobilized by IL-8 after pretreatment with stem cell factor. Exp Hematol 24: 1387–1393PubMedGoogle Scholar
  42. 42.
    King AG, Horowitz D, Levin SB, Farese AM, MacVittie TJ, Pelus LM (2001) Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GROβ. Blood 97: 1534–1542PubMedCrossRefGoogle Scholar
  43. 43.
    Pelus LM, Horowitz D, Cooper SC, King AG (2002) Peripheral blood stem cell mobilization. A role for CXC chemokines. Crit Rev Oncol Hematol 43: 257–275PubMedCrossRefGoogle Scholar
  44. 44.
    King AG, Johanson K, Frey CA, DeMarsh PL, White JR, McDevitt P, McNulty D, Balcarek J, Jonak ZL, Bhatnagar PK et al (2000) Identification of unique truncated KC/GROβ chemokines with potent hematopoietic and anti-infective activities. J Immunol 164: 3774–3782PubMedGoogle Scholar
  45. 45.
    Pelus LM, Bian H, King AG, Fukuda S (2004) Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT/CXCL2Δ4. Blood 103: 110–119PubMedCrossRefGoogle Scholar
  46. 46.
    Wang J-B, Mukaida N, Zhang Y, Ito T, Nakao S, Matsushima K (1997) Enhanced mobilization of hematopoietic progenitor cells by mouse MIP-2 and granulocyte colony-stimulating factor in mice. J Leukocyte Biol 62: 503–509PubMedGoogle Scholar
  47. 47.
    Fibbe WE, Pruijt JFM, Kooyk YV, Figdor CG, Opdenakker G, Willemze R (2000) The role of metalloproteinases and adhesion molecules in interleukin-8-induced stem cell mobilization. Sem Hematol 37: 19–24CrossRefGoogle Scholar
  48. 48.
    Broxmeyer HE, Cooper S, Cacalano G, Hague NL, Bailish E, Moore MW (1996) Involvement of Interleukin (IL) 8 receptor in negative regulation of myeloid progenitor cells in vivo: evidence from mice lacking the murine IL-8 receptor homologue. J Exp Med 184: 1825–1832PubMedCrossRefGoogle Scholar
  49. 49.
    Laterveer L, Lindley IJD, Heemskerk DPM, Camps JAJ, Pauwels EKJ, Willemze R, Fibbe WE (1996) Rapid mobilization of hematopoietic progenitor cells in rhesus monkeys by a single intravenous injection of Interleukin-8. Blood 87: 781–788PubMedGoogle Scholar
  50. 50.
    Pruijt JFM, Verzaal P, van Os R, de Kruijf E-JFM, van Schie MLJ, Mantovani A, Vecchi A, Lindley IJD, Willemze R, Starchx S, Opendaker G, Fibbe WE (2002) Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci USA 99: 6228–6233PubMedCrossRefGoogle Scholar
  51. 51.
    Pruijt JFM, van Kooyk Y, Figdor CG, Lindley IJD, Willemze R, Fibbe WE (1998) Anti-LFA-1 blocking antibodies prevent mobilization of hematopoietic progenitor cells induced by interleukin-8. Blood 91: 4099–4105PubMedGoogle Scholar
  52. 52.
    Pruijt JFM, Fibbe WE, Laterveer L, Pieters RA, Lindley IJD, Paemen L, Masure S, Willemze R, Opdenakker G (1999) Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the Metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci USA 96: 10863–10868PubMedCrossRefGoogle Scholar
  53. 53.
    Anderson DC, Miller LJ, Schmalstieg FC, Rothlein R, Springer TA (1986) Contributions of the Mac-1glycoprotein family to adherence-dependent granulocyte functions: structure-function assessments employing subunit-specific monoclonal antibodies. J Immunol 137: 15–27PubMedGoogle Scholar
  54. 54.
    Borregaard N, Cowland JB (2000) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89: 3503–3521Google Scholar
  55. 55.
    Papayannopoulou T, Priestly GV, Nakamoto B, Zafiropoulos V, Scott LM, Harlan JM (2001) Synergistic mobilization of hematopoietic progenitor cells using concurrent β1 and β2 integrin blockade or β2-deficient mice. Blood 97: 1282–1288PubMedCrossRefGoogle Scholar
  56. 56.
    Velders GA, Pruijt JFM, Verzaal P, van Os R, van Kooyk Y, Figdor CG, de Kruijf E-JFM, Willemze R, Fibbe WE (2002) Enhancement of G-CSF-induced stem cell mobilization by antibodies against the β2 integrins LFA-1 and Mac-1. Blood 327: 327–333CrossRefGoogle Scholar
  57. 57.
    Werb Z (1997) ECM and cell surface proteolysis: Regulating cellular ecology. Cell 91: 439–442PubMedCrossRefGoogle Scholar
  58. 58.
    Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4: 197–250PubMedGoogle Scholar
  59. 59.
    Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: Biological activity and clinical implications. J Clin Oncol 18: 1135–1149PubMedGoogle Scholar
  60. 60.
    Ramos-Desimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP (1999) Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 274: 13066–13076PubMedCrossRefGoogle Scholar
  61. 61.
    Fukuda S, Bian H, King AG, Pelus LM (2005) The CXC chemokine GROβ mobilizes PBSC with enhanced homing capacity independent of the SDF-1/CXCR4 axis. Submitted Google Scholar
  62. 62.
    Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R, Guetta E, Barkai G, Nagler A, Lapidot T (2001) Rapid and efficient homing of human CD34(+)CD38(−/low) CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/β2m(null) mice. Blood 97: 3283–3291PubMedCrossRefGoogle Scholar
  63. 63.
    Shen H, Cheng T, Olszak I, Garcia-Zepeda E, Lu Z, Hermann S, Fallon R, Luster AD, Scadden DT (2001) CXCR-4 desensitization is associated with tissue localization of hematopoietic progenitor cells. J Immunol 166: 5027–5033PubMedGoogle Scholar
  64. 64.
    Hattori K, Heissig B, Tashiro T, Tateno M, Shieh J-H, Hackett NR, Quitoriano MS, Crystal RG, Rafii S, Moore MAS (2001) Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97: 3354–3360PubMedCrossRefGoogle Scholar
  65. 65.
    Ma Q, Jones D, Springer TA (1999) The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10: 463–471PubMedCrossRefGoogle Scholar
  66. 66.
    Nagasawa T, Hirota S, Tachibaba K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382: 635–638PubMedCrossRefGoogle Scholar
  67. 67.
    Zou Y-R, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393: 595–599PubMedCrossRefGoogle Scholar
  68. 68.
    Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I, Ben-Hur H, Lapidot T, Alon R (1999) The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J Clin Invest 104: 1199–1211PubMedCrossRefGoogle Scholar
  69. 69.
    Hidalgo A, Sanz-Rodríguez F, Rodríguez-Fernández JL, Albella B, Blaya C, Wright N, Cabañas C, Prósper F, Gutierrez-Ramos JC, Teixidó J (2001) Chemokine stromal cellderived factor-1α modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol 29: 345–355PubMedCrossRefGoogle Scholar
  70. 70.
    Shen W, Bendall LJ, Gottlieb DJ, Bradstock KF (2001) The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Exp Hematol 29: 1439–1447PubMedCrossRefGoogle Scholar
  71. 71.
    Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology 3: 687–694PubMedCrossRefGoogle Scholar
  72. 72.
    Lévesque J-P, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by G-CSF or cyclophosphamide. J Clin Invest 111: 187–196PubMedCrossRefGoogle Scholar
  73. 73.
    Delgado MB, Clark-Lewis I, Loescher P, Langen H, Thelen M, Baggiolini M, Wolf M (2001) Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes. Eur J Immunol 31: 699–707PubMedCrossRefGoogle Scholar
  74. 74.
    McQuibban GA, Butler GS, Gong J-H, Bendall L, Powers C, Clark-Lewis I, Ovrall CM (2001) Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Cell Biol 276: 43503–43508Google Scholar
  75. 75.
    Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC (2002) G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 17: 413–423PubMedCrossRefGoogle Scholar
  76. 76.
    Semerad CL, Liu F, Christopher MJ, Link DC (2003) G-CSF treatment induces a significant decrease in CXCL12 mRNA expression in the bone marrow. Blood 102: 824aGoogle Scholar
  77. 77.
    Christopher MJ, Liu F, Link DC (2004) Disruption of SDF-1/CXCR4 signaling during Flt-3 ligand and stem cell factor (SCF) induced hematopoietic progenitor mobilization. Blood 104: 121bGoogle Scholar
  78. 78.
    Pelus LM, Bian H, Fukuda S, Wong D, Merzouk A, Salari H (2005) The CXCR4 agonist peptide, CTCE-0021, rapidly mobilizes polymorphonuclear neutrophils and hematopoietic progenitor cells into peripheral blood and synergizes with granulocyte colony-stimulating factor. Exp Hematol 33: 295–307PubMedCrossRefGoogle Scholar
  79. 79.
    Valenzuela-Fernández A, Planchenault T, Baleux F, Staropoli I, LeBarillec K, Leduc D, Deluanay T, Lazarini F, Virelizier J-L, Chignard M et al (2002) Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem 277: 15677–15689PubMedCrossRefGoogle Scholar
  80. 80.
    Merzouk A, Wong D, Salari H, Bian H, Fukuda S, Pelus LM (2004) Rational design of chemokine SDF-1 analogs with agonist activity for the CXCR4 receptor and the capacity to rapidly mobilize PMN and hematopoietic progenitor cells in mice. Lett Drug Des Discov 1: 126–134CrossRefGoogle Scholar
  81. 81.
    Zhong R, Law P, Wong D, Merzouk A, Salari H, Ball ED (2004) Small peptide analogs to stromal derived factor-1 enhance chemotactic migration of human and mouse hematopoietic cells. Exp Hematol 32: 470–475PubMedCrossRefGoogle Scholar
  82. 82.
    Christopherson K II, Cooper S, Broxmeyer HE (2003) Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood 101: 4680–4686PubMedCrossRefGoogle Scholar
  83. 83.
    Christopherson K II, Hangoc G, Broxmeyer HE (2002) Cell surface peptidase CD26/Dipeptidylppeptidase IV regulates CXCL12/Stromal cell-derived factor-1α-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 169: 7000–7008PubMedGoogle Scholar
  84. 84.
    Christopherson KW II, Cooper S, Broxmeyer HE (2003) CD26 is essential for normal G-CSF-induced progenitor cell mobilization as determined by CD26−/− mice. Exp Hematol 31: 1126–1134PubMedGoogle Scholar
  85. 85.
    De Clercq E (2003) The bicyclan AMD3100 story. Nat Rev Drug Discov 2: 581–587PubMedCrossRefGoogle Scholar
  86. 86.
    Hatse S, Princen K, Bridger G, De Clercq E, Schols D (2002) Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Letters 527: 255–262PubMedCrossRefGoogle Scholar
  87. 87.
    Joo EK, Broxmeyer HE, Kwon HJ, Kang HB, Kim JS, Lim JS, Choe YK, Choe IS, Myung PK, Lee Y (2004) Enhancement of cell survival by stromal cell-derived factor-1/CXCL12 involves activation of CREB and induction of Mcl-1 and c-Fos in factor-dependent human cell line MO7e. Stem Cells Dev 13: 563–570PubMedCrossRefGoogle Scholar
  88. 88.
    Broxmeyer HE, Clapp DW, Orschell CM, Hangoc G, Cooper S, Plett A, Liles WC, Li X, Graham-Evans B, Calandra G et al (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201: 1307–1318PubMedCrossRefGoogle Scholar
  89. 89.
    Liles WC, Broxmeyer HE, Rodger E, Wood B, Hübel K, Cooper S, Hangoc G, Bridger GJ, Henson GW, Calandra G et al (2003) Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102: 2728–2730PubMedCrossRefGoogle Scholar
  90. 90.
    Hubel K, Liles WC, Broxmeyer HE, Rodger E, Wood B, Cooper S, Hangoc G, MacFarland R, Bridger GJ, Henson GW et al (2004) Leukocytosis and mobilization of CD34+ hematopoietic progenitor cells by AMD3100, a CXCR4 antagonist. Supportive Cancer Therapy 1: 165–172PubMedCrossRefGoogle Scholar
  91. 91.
    Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdoef D, Badel K, Calandra G, Dipersio JF (2004) Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and Non-Hodgkin’s lymphoma. J Clin Oncol 22: 1095–1102PubMedCrossRefGoogle Scholar
  92. 92.
    Liles WC, Rodger E, Broxmeyer HE, Dehner C, Badel K, Calandra J, Christensen J, Wood B, Price TH, Dale DC (2004) Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with G-CSF by singledose administration of AMD3100, a CXCR4 antagonist. Transfusion 45: 295–300CrossRefGoogle Scholar
  93. 93.
    Yang OO, Swanberg SL, Lu Z, Dziejman M, McCoy J, Luster AD, Walker BD, Herrmann SH (1999) Enhanced inhibition of human immunodeficiency virus type 1 by metstromal-derived factor 1β correlates with down-modulation of CXCR4. J Virology 73: 4582–4589PubMedGoogle Scholar
  94. 94.
    Basu S, Broxmeyer HE (2005) Transforming growth factor-ta1 modulates responses of CD34+ cord blood cells to stromal cell-derived factor-1/CXCL12. Blood 106: 485–493PubMedCrossRefGoogle Scholar
  95. 95.
    Murdoch C, Finn A (2000) Chemokine receptors and their role in inflammation and infectious diseases. Blood 95: 3032–3043PubMedGoogle Scholar
  96. 96.
    Liu F, Wu HY, Wesselschmidt RKT, Link DC (1996) Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5: 491–501PubMedCrossRefGoogle Scholar
  97. 97.
    Lévesque J-P, Liu F, Simmons PJ, Betsuyaku T, Senior RM, Pham C, Link DC (2004) Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 104: 65–72PubMedCrossRefGoogle Scholar
  98. 98.
    Lévesque J-P, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98: 1289–1297PubMedCrossRefGoogle Scholar
  99. 99.
    Lévesque J-P, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ (2002) Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 30: 440–449PubMedCrossRefGoogle Scholar
  100. 100.
    Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392: 565–568PubMedCrossRefGoogle Scholar
  101. 101.
    Proost P, Struyf S, Schols D, Durinx C, Wuyts A, Lenaerts J-P, DeClercq E, DeMeester I, VanDamme J (1998) Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell derived factor-1α. FEBS Letters 432: 73–76PubMedCrossRefGoogle Scholar
  102. 102.
    Flomenberg N, Devine SM, DiPersio JF, Liesveld JL, McCarty JM, Rowley SD, Vesole DH, Badel K, Calandra G (2005) The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 106: 1867–1874PubMedCrossRefGoogle Scholar
  103. 103.
    Moore MAS, Hattori K, Heissig B, Shieh J-H, Dias S, Crystal RG, Rafii S (2001) Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF and angiopoietin-1. Annals NY Acad Sci 938: 36–45CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Louis M. Pelus
    • 1
  • Hal E. Broxmeyer
    • 1
  1. 1.Department of Microbiology & Immunology and the Walther Oncology CenterIndiana University School of Medicine and the Walther Cancer InstituteIndianapolisUSA

Personalised recommendations