Quantum Energy Inequalities and Stability Conditions in Quantum Field Theory

  • Christopher J. Fewster
Part of the Progress in Mathematics book series (PM, volume 251)


Quantum Energy Inequalities (QEIs) are constraints on the extent to which quantum fields can violate the energy conditions of classical general relativity. As such they are closely related to the gravitational stability of quantised matter. In this contribution we discuss links between QEIs and other stability conditions in quantum field theory: the microlocal spectrum condition, passivity and nuclearity. The fist two links suggest an interconnection between stability conditions at three different length scales, while the third hints at a deeper origin of QEIs.


Energy Inequality Weyl Algebra Weak Energy Condition Dominant Energy Condition Quantise Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Brunetti and K. Fredenhagen: Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds. Commun. Math. Phys. 208:623–661 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    R. Brunetti, K. Fredenhagen and M. Köhler: The microlocal spectrum condition and Wick polynomials in curved spacetime. Commun. Math. Phys. 180:633–652 (1996).ADSCrossRefMATHGoogle Scholar
  3. 3.
    D. Buchholz and P. Junglas: Local properties of equilibrium states and the particle spectrum in quantum field theory. Lett. Math. Phys. 11:51–58 (1986).ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    D. Buchholz and M. Porrmann: How small is the phase space in quantum field theory? Ann. Inst. H. Poincaré 52:237–257 (1990).MathSciNetMATHGoogle Scholar
  5. 5.
    D. Buchholz and E.H. Wichmann: Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106:321–344 (1986).ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    H. Epstein, V. Glaser and A. Jaffe: Nonpositivity of the energy density in quantized field theories. Nuovo Cimento 36:1016–1022 (1965).MathSciNetCrossRefGoogle Scholar
  7. 7.
    S.P. Eveson, C.J. Fewster and R. Verch: Quantum Inequalities in Quantum Mechanics. To appear in Ann. H. Poincaré. Preprint arXiv:math-ph/0312046, 2003.Google Scholar
  8. 8.
    C.J. Fewster: A general worldline quantum inequality. Class. Quantum Grav. 17:1897–1911 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    C.J. Fewster: Energy Inequalities in Quantum Field Theory (2003). Available at http://www-users.york.ac.uk/~cjf3/QEIs.psGoogle Scholar
  10. 10.
    C.J. Fewster and S.P. Eveson: Bounds on negative energy densities in flat spacetime. Phys. Rev. D 58:084010 (1998).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    C.J. Fewster and S. Hollands: Quantum Energy Inequalities in two-dimensional conformal field theory. Preprint arXiv:math-ph/0412028., 2004.Google Scholar
  12. 12.
    C.J. Fewster and B. Mistry: Quantum Weak Energy Inequalities for the Dirac field in Flat Spacetime. Phys. Rev. D 68:105010 (2003).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    C.J. Fewster, I. Ojima and M. Porrmann: p-Nuclearity in a New Perspective. Preprint arXiv:math-ph/0412027, 2004.Google Scholar
  14. 14.
    C.J. Fewster and M.J. Pfenning: A Quantum Weak Energy Inequality for spin-one fields in curved spacetime. J. Math. Phys. 44:4480–4513 (2003).ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    C.J. Fewster and T.A. Roman: Null energy conditions in quantum field theory. Phys. Rev. D. 67:044003 (2003).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    C.J. Fewster and E. Teo: Bounds on negative energy densities in static space-times. Phys. Rev. D 59:104016 (1999).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    C.J. Fewster and R. Verch: A quantum weak energy inequality for Dirac fields in curved spacetime. Commun. Math. Phys. 225:331–359 (2002).ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    C.J. Fewster and R. Verch: Stability of quantum systems at three scales: passivity, quantum weak energy inequalities and the microlcal spectrum condition. Commun. Math. Phys. 240:329–375 (2003).ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    É.É. Flanagan: Quantum inequalities in two-dimensional Minkowski spacetime. Phys. Rev. D 56:4922–4926 (1997).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    É.É. Flanagan: Quantum inequalities in two dimensional curved spacetimes. Phys. Rev. D 66:104007 (2002).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    L.H. Ford: Quantum coherence effects and the second law of thermodynamics. Proc. Roy. Soc. Lond. A 364:227–236 (1978).ADSCrossRefGoogle Scholar
  22. 22.
    L.H. Ford: Constraints on negative-energy fluxes. Phys. Rev. D 43:3972–3978 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    L.H. Ford, A. Helfer and T.A. Roman: Spatially averaged quantum inequalities do not exist in four-dimensional spacetime. Phys. Rev. D 66:124012 (2002).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    L.H. Ford and T.A. Roman: Averaged energy conditions and quantum inequalities. Phys. Rev. D 51:4277–4286 (1995).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    L.H. Ford and T.A. Roman: Quantum field theory constrains traversable wormhole geometries. Phys. Rev. D 53:5496–5507 (1996).ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    L.H. Ford and T.A. Roman: Restrictions on negative energy density in flat spacetime. Phys. Rev. D 55:2082–2089 (1997).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Haag: Local quantum physics: Fields, particles, algebras. Springer Verlag, Berlin, 1992.CrossRefMATHGoogle Scholar
  28. 28.
    S.W. Hawking: Chronology protection conjecture. Phys. Rev. D 46:603–611 (1992).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    S.W. Hawking and G.F.R. Ellis: The large scale structure of space-time. Cambridge University Press, Cambridge, 1973.CrossRefMATHGoogle Scholar
  30. 30.
    S. Hollands: The Hadamard condition for Dirac fields and adiabatic states on Robertson-Walker spacetimes. Commun. Math. Phys. 216:635–661 (2001).ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    L. Hörmander: The analysis of linear partial differential operators I. Springer Verlag, Berlin, 1983.MATHGoogle Scholar
  32. 32.
    W. Junker and E. Schrohe: Adiabatic vacuum states on general spacetime manifolds: Definition, construction, and physical properties. Ann. H. Poincaré 3:1113–1181 (2002).MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    B.S. Kay and R.M. Wald: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Rep. 207:49–136 (1991).ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    K. Kratzert: Singularity structure of the free Dirac field on a globally hyperbolic spacetime. Annalen Phys. 9:475–498 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    M. Ludvigsen and J.A.G. Vickers: A simple proof of the positivity of the Bondi mass. J. Phys. A Math. Gen. 15:L67–L70 (1982).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    P. Marecki: Application of quantum inequalities to quantum optics. Phys. Rev. A 66:053801 (2002).ADSCrossRefGoogle Scholar
  37. 37.
    M.J. Pfenning: Quantum inequalities for the electromagnetic field. Phys. Rev. D 65:024009 (2002).ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    M.J. Pfenning and L.H. Ford: The unphysical nature of ‘warp drive’. Class. Quantum Grav. 14:1743–1751 (1997).ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    M.J. Pfenning and L.H. Ford: Scalar field quantum inequalities in static spacetimes. Phys. Rev. D 57:3489–3502 (1998).ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    W. Pusz and S.L. Woronowicz: Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58:273–290 (1978).ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    M.J. Radzikowski: Micro-local approach to the Hadamard condition in quantum field theory in curved spacetime. Commun. Math. Phys. 179:529–553 (1996).ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    T.A. Roman: Some thoughts on energy conditions and wormholes. Preprint arXiv:gr-qc/0409090, 2004. To appear in: Proceedings of the Tenth Marcel Grossmann Meeting on General Relativity and Gravitation.Google Scholar
  43. 43.
    H. Sahlmann and R. Verch: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214:705–731 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    H. Sahlmann and R. Verch: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13:1203–1246 (2001).MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    R. Schumann: Operator ideals and the statistical independence in quantum field theory. Lett. Math. Phys. 37:249–271 (1996).ADSMathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    A. Strohmaier, R. Verch and M. Wollenberg: Microlocal analysis of quantum fields on curved spacetimes: Analytic Wavefront sets and Reeh-Schlieder theorems. J. Math. Phys. 43:5514–5530 (2002).ADSMathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    D.N. Vollick: Quantum inequalities in curved two-dimensional spacetimes. Phys. Rev. D 61:084022 (2000).ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    E. Witten: A new proof of the positive energy theorem. Commun. Math. Phys. 80:381–402 (1981).ADSMathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    H. Yu and P. Wu: Quantum inequalities for the free Rarita-Schwinger fields in flat spacetime. Phys. Rev. D 69:064008 (2004).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Christopher J. Fewster
    • 1
  1. 1.Department of MathematicsUniversity of YorkHeslington, YorkUK

Personalised recommendations