Remarks on the Anti-de Sitter Space-Time

  • Henri Epstein
Part of the Progress in Mathematics book series (PM, volume 251)


This is a short review of work done with Jacques Bros and Ugo Moschella. A general framework for QFT on AdS or its universal cover is given, with definitions of covariance, locality, and energy-momentum spectrum, and expressed in terms of analyticity properties of Wightman functions. The Bisognano-Wichmann analyticity follows (leading to the AdS-Unruh effect), as well as CTP.


Universal Cover Spectral Condition Wightman Function Universal Covering Group Wick Power 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bertola, J. Bros, U. Moschella and R. Schaeffer: A general construction of conformal field theories from scalar anti-de Sitter quantum field theories. Nucl. Phys. B 587:619–644 (2000). [hep-th/9908140].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    J.J. Bisognano and E.H. Wichmann: On the duality condition for a Hermitian scalar field. J. Math. Phys. 16:985 (1975).ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    H.-J. Borchers: On the structure of the algebra of field observables. Nuovo Cimento 24:214 (1962).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. Bros, H. Epstein and U. Moschella: Towards a General Theory of Quantized Fields on the Anti-de Sitter Space-Time. Commun. Math. Phys. 231:481–528 (2002). [hep-th/0111255].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    C. Fronsdal: Elementary Particles In A Curved Space. II. Phys. Rev. D 10:589–598 (1974).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    V. Glaser: On the equivalence of the Euclidean and Wightman formulations of field theory. Commun. Math. Phys. 37:257–272 (1974).ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    R. Jost: The general theory of quantized fields. Providence. A.M.S., Rhode Island, 1965.MATHGoogle Scholar
  8. 8.
    J. Maldacena: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2:231–252 (1998). [hep-th/9711200].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    K. Osterwalder and R. Schrader: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 33:83–112 (1973).ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    K. Osterwalder and R. Schrader: Axioms for Euclidean Green’s functions, II. Commun. Math. Phys. 42:281–305 (1975).ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    R.F. Streater and A.S. Wightman: PCT, Spin and Statistics, and all that. W.A. Benjamin, New Yoek, 1964.MATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Henri Epstein
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations