Yang-Mills and Some Related Algebras

  • Alain Connes
  • Michel Dubois-Violette
Part of the Progress in Mathematics book series (PM, volume 251)


After a short introduction on the theory of homogeneous algebras we describe the application of this theory to the analysis of the cubic Yang-Mills algebra, the quadratic self-duality algebras, their “super” versions as well as to some generalization.


Quantum Group Global Dimension Cyclic Permutation Relate Algebra Hochschild Cohomology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Artin and W.F. Schelter: Graded algebras of global dimension 3. Adv. Math. 66:171–216 (1987).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    R. Berger: Koszulity for nonquadratic algebras. J. Algebra 239:705–734 (2001).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    R. Berger: La catégorie graduée, 2002.Google Scholar
  4. 4.
    R. Berger, M. Dubois-Violette, and M. Wambst: Homogeneous algebras. J. Algebra 261:172–185 (2003).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    R. Berger and N. Marconnet: Koszul and Gorenstein properties for homogeneous algebras. math.QA/0310070, 2003.Google Scholar
  6. 6.
    H. Cartan and S. Eilenberg: Homological algebra. Princeton University Press, 1973.Google Scholar
  7. 7.
    A. Connes: Non-commutative differential geometry. Publ. IHES 62:257–360 (1986).MathSciNetGoogle Scholar
  8. 8.
    A. Connes: Non-commutative geometry. Academic Press, 1994.Google Scholar
  9. 9.
    A. Connes and M. Dubois-Violette: Noncommutative finite-dimensional manifolds. I.Spherical manifolds and related examples. Commun. Math. Phys. 230:539–579 (2002).ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    A. Connes and M. Dubois-Violette: Yang-Mills algebra. Lett. Math. Phys. 61:149–158 (2002).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A. Connes and M. Dubois-Violette: Moduli space and structure of noncommutative 3-spheres. Lett. Math. Phys. 66:91–121 (2003).ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. Connes and M. Dubois-Violette: Yang-Mills algebra, II. In preparation, 2005.Google Scholar
  13. 13.
    M. Dubois-Violette: d N = 0: Generalized homology. K-Theory 14:371–404 (1998).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    M. Dubois-Violette and G. Launer: The quantum group of a non-degenerated bilinear form. Phys. Lett. 245B:175–177 (1990).ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    M. Dubois-Violette and T. Popov: Homogeneous algebras, statistics and combinatorics. Lett. Math. Phys. 61:159–170 (2002).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    J.L. Loday: Notes on Koszul duality for associative algebras, 1999.Google Scholar
  17. 17.
    Yu.I. Manin: Some remarks on Koszul algebras and quantum groups. Ann. Inst. Fourier, Grenoble 37:191–205 (1987).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    E.K. Sklyanin: Some algebraic structures connected with the Yang-Baxter equation. Func. Anal. Appl. 16:263–270 (1982).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    S.P. Smith and J.T. Stafford: Regularity of the four dimensional Sklyanin algebra. Compos. Math. 83:259–289 (1992).MathSciNetMATHGoogle Scholar
  20. 20.
    M. Van den Bergh: A relation between Hochschild homology and cohomology for Gorenstein rings. Proc. Amer. Math. Soc. 126:1345–1348 (1998).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    M. Van den Bergh: Erratum. Proc. Amer. Math. Soc. 130:2809–2810 (2002).MathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Alain Connes
    • 1
    • 3
    • 4
  • Michel Dubois-Violette
    • 2
  1. 1.Collège de FranceParisFrance
  2. 2.Laboratoire de Physique Théorique, UMR 8627Université Paris XIOrsay CedexFrance
  3. 3.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance
  4. 4.Vanderbilt UniversityUSA

Personalised recommendations