New Constructions in Local Quantum Physics

  • Bert Schroer
Part of the Progress in Mathematics book series (PM, volume 251)


Among several ideas which arose as consequences of modular localization there are two proposals which promise to be important for the classification and construction of QFTs. One is based on the observation that wedge-localized algebras may have particle-like generators with simple properties and the second one uses the structural simplification of wedge algebras in the holographic lightfront projection. Factorizable d = 1 + 1 models permit us to analyse the interplay between particle-like aspects and chiral field properties of lightfront holography.


Vacuum Polarization Modular Theory Chiral Theory Wave Function Renormalization Modular Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Aks: J. Math. Phys. 6:516 (1965).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    H.M. Babujian, A. Fring, M. Karowski and A. Zappletal: Nucl. Phys. B 538:535 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    J. Barata, J. Mund and B. Schroer: In preparation.Google Scholar
  4. 4.
    J.J. Bisognano and E.H. Wichmann: J. Math. Phys. 16:985 (1975).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    H.-J. Borchers: J. Math. Phys. 41:3604 (2000).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    H.-J. Borchers, D. Buchholz and B. Schroer: Commun. Math. Phys. 219:125 (2001). arXiv:hep-th/0003243.ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Bros, H. Epstein and V. Glaser: Commun. Math. Phys. 1:240 (1965).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Brunetti, K. Fredenhagen and R. Verch: Commun. Math. Phys. 237:31 (2003).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Brunetti, D. Guido and R. Longo: Rev. Math. Phys. 14:759 (2002).MathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Buchholz and G. Lechner: Modular Nuclearity and Localization. arXiv:math-ph/0402072.Google Scholar
  11. 11.
    F. Coester: Helv. Physica Acta 38:7 (1965).MathSciNetGoogle Scholar
  12. 12.
    A. Connes: Ann. Inst. Fourier 24:121 (1974).MathSciNetCrossRefGoogle Scholar
  13. 13.
    W. Driessler: Commun. Math. Phys. 53:295 (1977).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    L. Fassarella and B. Schroer: J. Phys. A: Math. Gen. 35:9123 (2002).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Haag: Local Quantum Physics. Springer, 1996.Google Scholar
  16. 16.
    R. Haag, N. Hugenholtz and M. Winnink: Commun. Math. Phys. 5:215 (1967).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Haag and B. Schroer: J. Math. Phys. 5:248 (1962).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    W. Heisenberg: Zeitschr. für Naturforschung 1:608 (1946).ADSMathSciNetGoogle Scholar
  19. 19.
    G. ’t Hooft: In: Salam-Festschrift (A. Ali et al., eds.). World Scientific, 1993, p. 284.Google Scholar
  20. 20.
    M. Jörss: Lett. Math. Phys. 38:257 (1996).MathSciNetCrossRefGoogle Scholar
  21. 21.
    R. Kaehler and H.-W. Wiesbrock: J. Math. Phys. 42:74 (2001).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Karowski, H.J. Thun, T.T. Truong and P. Weisz: Phys. Lett. B 67:321 (1977).ADSCrossRefGoogle Scholar
  23. 23.
    G. Lechner: Lett. Math. Phys. 64:137 (2003).MathSciNetCrossRefGoogle Scholar
  24. 24.
    G. Lechner: On the Existence of Local Observables in Theories with a Factorizing S-Matrix. arXiv:math-ph/0405062.Google Scholar
  25. 25.
    P. Leyland, J. Roberts and D. Testard: Duality for quantum free fields. Unpublished notes, 1978.Google Scholar
  26. 26.
    J. Mund: Ann. H. Poinc. 2:907 (2001).MathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Mund, B. Schroer and J. Yngvason: J. Math. Phys. 44:2037 (2003).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Mund, B. Schroer and J. Yngvason: Phys. Lett. B 596:156 (2004).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Mund, B. Schroer and J. Yngvason: String-localized Quantum Fields and Modular Localization. In preparation.Google Scholar
  30. 30.
    J. Norton: The Hole Argument. The Stanford Encyclopedia of Philosophy, Spring 2004 edition (Edward N. Zalta, ed.). Scholar
  31. 31.
    M. Rieffel and A. van Daele: Pacific J. of Math. 69:187 (1977).CrossRefGoogle Scholar
  32. 32.
    B. Schroer: Annals of Physics 295:190 (1999).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    B. Schroer: An anthology of non-local QFT and QFT on noncommutative spacetime. arXiv:hep-th/040510.Google Scholar
  34. 34.
    B. Schroer: Constructive proposals for QFT based on the crossing property and on lightfront holography. arXiv:hep-th/0406016.Google Scholar
  35. 35.
    O. Steinmann: Commun. Math. Phys. 87:259 (1982).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    R.F. Streater and A.S. Wightman: PCT Spin&Statistics and All That. Benjamin, 1964.Google Scholar
  37. 37.
    S.J. Summers: Tomita-Takesaki Modular Theory. To appear in the Encyclopedia of Mathematical Physics, Elsevier Publ.Google Scholar
  38. 38.
    M. Takesaki: Tomita’s Theory of Modular Hilbert Algebras and its Applications. Lecture Notes in Mathematics Vol. 128, Springer Verlag, Berlin, Heidelberg, New York, 1970.MATHGoogle Scholar
  39. 39.
    H.-W. Wiesbrock: Comm. Math. Phys. 158:537 (1993).ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Yngvason: The role of type III factors in quantum field theory. arXiv:math-ph/0411058.Google Scholar
  41. 41.
    A.B. Zamolodchikov: Int. J. of Mod. Phys. A 1:1235 (1989).Google Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Bert Schroer
    • 1
    • 2
  1. 1.CBPFRio de JaneiroBrazil
  2. 2.Institut für Theoretische PhysikFU-BerlinGermany

Personalised recommendations