Algebraic Holography in Asymptotically Simple, Asymptotically AdS Space-times

  • Pedro Lauridsen Ribeiro
Part of the Progress in Mathematics book series (PM, volume 251)


We describe a general geometric setup allowing a generalization of Rehren duality to asymptotically anti-de Sitter space-times whose classical matter distribution is sufficiently well-behaved to prevent the occurence of singularities in the sense of null geodesic incompleteness. We also comment on the issues involved in the reconstruction of an additive and locally covariant bulk net of observables from a corresponding boundary net in this more general situation.


Conjugate Point Null Geodesic Cauchy Surface Timelike Curve Null Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.I. Arnold: Mathematical Methods of Classical Mechanics. Springer Verlag, 2nd ed., 1989.Google Scholar
  2. 2.
    A. Ashtekar and S. Da Asymptotically Anti-de Sitter Space-times: Conserved Quantities. Class. Quant. Grav. 17:L17–L30 (2000).ADSCrossRefMATHGoogle Scholar
  3. 3.
    A. Ashtekar and A. Magnon: Asymptotically Anti-de Sitter Space-times. Class. Quant. Grav. 1:L39–L44 (1984).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J.K. Beem, P.E. Ehrlich and K.L. Easley: Global Lorentzian Geometry. M. Dekker, 2nd ed., 1996.Google Scholar
  5. 5.
    A. Borde: Geodesic Focusing, Energy Conditions and Singularities. Class. Quant. Grav. 4:343–356 (1987).ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    R. Bousso: The Holographic Principle. Rev. Mod. Phys. 74:825–874 (2002).ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    R. Bousso and L. Randall: Holographic Domains of Anti-de Sitter Space. JHEP 0204:057 (2002).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Brunetti, K. Fredenhagen and R. Verch: The Generally Covariant Locality Principle — A New Paradigm for Local Quantum Physics. Commun. Math. Phys. 237:31–68 (2003).ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    R. Brunetti, D. Guido and R. Longo: Modular Structure and Duality in Conformal Quantum Field Theory. Commun. Math. Phys. 156:201–219 (1993).ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    C.J. Fewster and T.A. Roman: Null Energy Conditions in Quantum Field Theory. Phys. Rev. D 67:044003 (2003).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Friedrich: Cauchy Problems for the Conformal Vacuum Field Equations in General Relativity. Commun. Math. Phys. 91:445–472 (1983).ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    H. Friedric Existence and Structure of Past Asymptotically Simple Solutions of Einstein’s Field Equations with Positive Cosmological Constant. J. Geom. Phys. 3:101–117 (1986).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Friedrich: Einstein Equations and Conformal Structure: Existence of Anti-de Sitter-type Space-Times. J. Geom. Phys. 17:125–184 (1995).ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    G.J. Galloway: Maximum Principles for Null Hypersurfaces and Null Splitting Theorems. Annales Henri Poincaré 1:543–567 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    G.J. Galloway: Some global results for asymptotically simple space-times. In: Proceedings of the Workshop “The conformal structure of space-times: geometry, analysis, numerics”, Tübingen, April 2001 (J. Frauendiener and H. Friedrich, eds.). Lect. Notes Phys. 604:51–60 (2002).Google Scholar
  16. 16.
    S. Gao and R.M. Wald: Theorems on gravitational time delay and related issues. Class. Quant. Grav. 17:4999–5008 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    D. Guido, R. Longo, J.E. Roberts and R. Verch: Charged sectors, spin and statistics in quantum field theory on curved space-times. Rev. Math. Phys. 13:125–198 (2001).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    R. Haag: Local Quantum Physics. Springer Verlag, 2nd ed., 1996.Google Scholar
  19. 19.
    S.W. Hawking and G.F.R. Ellis: The Large Scale Structure of Space-Time. Cambridge, 1973.Google Scholar
  20. 20.
    M. Henningson and K. Skenderis: Holography and the Weyl Anomaly. Fortsch. Phys. 48:125–128 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    A.N. Kolmogorov and S.V. Fomin: Introductory Real Analysis (Translation by R.A. Silverman). Dover, 1975.Google Scholar
  22. 22.
    J. Maldacena: The Large N Limit of Superconformal Field Theories and Supergravity. Adv. Theor. Math. Phys. 2:231–252 (1998).ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    B. O’Neill: Semi-Riemannian Geometry. Academic Press, 1983.Google Scholar
  24. 24.
    R. Penrose, R.D. Sorkin and E. Woolgar: A Positive Mass Theorem Based on the Focusing and Retardation of Null Geodesics. arXiv:gr-qc/9301015.Google Scholar
  25. 25.
    K.-H. Rehren: Algebraic Holography. Annales Henri Poincaré 1:607–623 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    K.-H. Rehren: Private communication.Google Scholar
  27. 27.
    P.L. Ribeiro: Renormalization Group Flow in Algebraic Holography. In: Proceedings of the International Conference on Renormalization Group and Anomalies in Gravity and Cosmology (M. Asorey and I.L. Shapiro, eds.). Nucl. Phys. B — Proc. Suppl. 127:193–195 (2004). [arXiv:hep-th/0306024].Google Scholar
  28. 28.
    G. Ruzzi: Punctured Haag duality in locally covariant quantum field theories. arXiv:math-ph/0402027.Google Scholar
  29. 29.
    S. Surya: Private communication.Google Scholar
  30. 30.
    R.M. Wald: General Relativity. Chicago University Press, 1984.Google Scholar
  31. 31.
    E. Witten: Anti de Sitter Space and Holography. Adv. Theor. Math. Phys. 2:253–291 (1998).ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    E. Woolgar: The Positivity of Energy for Asymptotically Anti-de Sitter Space-times. Class. Quant. Grav. 11:1881–1900 (1994).ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Pedro Lauridsen Ribeiro
    • 1
  1. 1.Departamento de Física Matemática, Instituto de FísicaUniversidade de São PauloSão Paulo, SPBrazil

Personalised recommendations