On Local Boundary CFT and Non-Local CFT on the Boundary

  • Karl-Henning Rehren
Part of the Progress in Mathematics book series (PM, volume 251)


The holographic relation between local boundary conformal quantum field theories (BCFT) and their non-local boundary restrictions is reviewed, and non-vacuum BCFT’s, whose existence was conjectured previously, are constructed. (Based on joint work [18] with R. Longo.)


Modular Group Modular Theory Vacuum Representation Cyclic Subspace Holographic Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.J. Bisognano and E. H. Wichmann: On the duality condition for quantum fields. J. Math. Phys. 17:303–321 (1976).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Böckenhauer and D.E. Evans: Modular invariants and subfactors. Fields Inst. Commun. 30:11–37 (2001). [arXiv:math.OA/0008056]MathSciNetMATHGoogle Scholar
  3. 3.
    D.E. Evans: Fusion rules of modular invariants. Rev. Math. Phys. 14:709–732 (2002).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    H.-J. Borchers: On revolutionizing QFT with modular theory. J. Math. Phys. 41:3604–3673 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    C. D’Antoni, R. Longo and F. Radulescu: Conformal nets, maximal temperatur and models from free probability. J. Oper. Theory 45:195–208 (2001). [arXiv:math.OA/9810003].MathSciNetMATHGoogle Scholar
  6. 6.
    K. Fredenhagen, K.-H. Rehren and B. Schroer: Superselection sectors with braid group statistics II. Rev. Math. Phys. SI1 (Special issue):113–157 (1992).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    D. Guido and R. Longo: The conformal spin and statistics theorem. Commun. Math. Phys. 181:11–35 (1996).ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    D. Guido, R. Longo and H.-W. Wiesbrock: Extensions of conformal nets and superselection structures. Commun. Math. Phys. 192:217–244 (1998).ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    R. Haag: Local Quantum Physics. Springer Verlag, Berlin, Heidelberg, New York, 1996.CrossRefMATHGoogle Scholar
  10. 10.
    M. Izumi and H. Kosaki: On a subfactor analogue of the second cohomology. Rev. Math. Phys. 14:733–757 (2002).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    M. Izumi, R. Longo and S. Popa: A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras. J. Funct. Anal. 155:25–63 (1998).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    V. Jones: Index for subfactors. Invent. Math. 72:1–25 (1983).ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    R. Kähler and H.W. Wiesbrock: Modular theory and the reconstruction of four-dimensional quantum field theories. J. Math. Phys. 42:74–86 (2001).ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Y. Kawahigashi and R. Longo: Classification of local conformal nets: case c < 1. To appear in Ann. Math. [arXiv:math-ph/0201015].Google Scholar
  15. 15.
    Y. Kawahigashi, R. Longo and M. Müger: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219:631–669 (2001).ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    R. Longo: Conformal subnets and intermediate subfactors. Commun. Math. Phys. 237:7–30 (2003).ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    R. Longo and K.-H. Rehren: Nets of subfactors. Rev. Math. Phys. 7:567–597 (1995).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    R. Longo and K.-H. Rehren: Local fields in boundary conformal QFT. Rev. Math. Phys. 16:909–960 (2004).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    R. Longo and F. Xu: Topological sectors and a dichotomy in conformal field theory. Commun. Math. Phys. 251:321–364 (2004).ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    U. Pennig: Diploma thesis, Göttingen, work in progress.Google Scholar
  21. 21.
    K.-H. Rehren: Canonical tensor product subfactors. Commun. Math. Phys. 211:395–406 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    M. Takesaki: Theory of Operator Algebras II. Springer Encyclopedia of Mathematical Sciences, Vol. 125, 2003.Google Scholar
  23. 23.
    H.-W. Wiesbrock: A comment on a recent work of Borchers. Lett. Math. Phys. 25:157–159 (1992).ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    J.-B. Zuber: CFT, BCFT, ADE and all that. Contemp. Math. 294:230–266 (2002). [arXiv:hep-th/0006151].MathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Karl-Henning Rehren
    • 1
  1. 1.Institut für Theoretische PhysikUniversität GöttingenGöttingenGermany

Personalised recommendations