DFR Perturbative Quantum Field Theory on Quantum Space Time, and Wick Reduction

  • Gherardo Piacitelli
Part of the Progress in Mathematics book series (PM, volume 251)


We discuss the perturbative approach à la Dyson to a quantum field theory with nonlocal self-interaction :φ⋆···⋆φ, according to Doplicher, Fredenhagen and Roberts (DFR). In particular, we show that the Wick reduction of nonlocally time-ordered products of Wick monomials can be performed as usual, and we discuss a very simple Dyson diagram.


Asymptotic Expansion Local Case Perturbative Approach Nonlocal Theory Ordinary Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bahns: Perturbative Methods on the Noncommutative Minkowski Space. Doctoral thesis, DESY-THESIS-04-004, Hamburg, 2003.Google Scholar
  2. 2.
    D. Bahns: Ultraviolet Finiteness of the Averaged Hamiltonian on the Noncommutative Minkowski Space. To be published. [arXiv:hep-th/0405224].Google Scholar
  3. 3.
    D. Bahns, S. Doplicher, K. Fredenhagen and G. Piacitelli: On the Unitarity Problem in space/time noncommutative theories. Phys. Lett. B 533:178 (2002). [arXiv:hep-th/0201222].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    D. Bahns, S. Doplicher, K. Fredenhagen and G. Piacitelli: Ultraviolet finite quantum field theory on quantum space-time. Commun. Math. Phys. 237:221–241 (2003). [arXiv:hep-th/0301100].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    D. Bahns, S. Doplicher, K. Fredenhagen and G. Piacitelli: Field theory on noncommutative space-times: Quasiplanar Wick products. Phys. Rev. D 71:25022 (2005). [arXiv:hep-th/0408204].ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    E.R. Caianiello: Combinatorics and Renormalization in quantum Field Theory. W.A. Benjamin, Reading, Mass., 1973.Google Scholar
  7. 7.
    S. Denk and M. Schweda: Time ordered perturbation theory for non-local interactions: Applications to NCQFT. JHEP 309:32 (2003). [arXiv:hep-th/0306101].ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    B. DeWitt: Quantizing Geometry. In: Gravitation: An Introduction to Current Research (L. Witten, ed.). Wiley, New York, 1962.Google Scholar
  9. 9.
    S. Doplicher, K. Fredenhagen and J.E. Roberts: The quantum structure of space-time at the Planck scale and quantum fields. Commun. Math. Phys. 172:187–220 (1995). [arXiv:hep-th/0303037].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    F.J. Dyson: The Radiation Theories Of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75:486–502 (1949).ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    R. Estrada, J.M. Gracia-Bondia and J. C. Varilly: On Asymptotic Expansions Of Twisted Products. J. Math. Phys. 30:2789–2796 (1989).ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    R.P. Feynman: Space-Time Approach To Quantum Electrodynamics. Phys. Rev. 76:769–789 (1949).ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    M. Gell-Mann and F. Low: Bound States in Quantum Field Theory. Phys. Rev. 84:350–354 (1951).ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    C.A. Mead: Possible Connection Between Gravitation and Fundamental Length. Phys. Rev. B 135:849–862 (1964).ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    C.A. Mead: Walking the Planck Length through History. Letter to the editor, Phys. Today 54 N. 11 (2001).Google Scholar
  16. 16.
    J. von Neumann: Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104:570 (1931).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    G. Piacitelli: Normal ordering of Operator Products on Noncommutative Space Time and Quantum Field Theory. Doctoral thesis, 2001.Google Scholar
  18. 18.
    G. Piacitelli: Non local theories: New rules for old diagrams. JHEP 0408 031 (2004). [arXiv:hep-th/0403055].ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    D. Rivier and E.C.G. Stueckelberg: A Convergent Expression for the Magnetic Moment of the Neutron. Letter to the Editor of Phys. Rev. 74:218 (1948), and references 2,3,4 therein.Google Scholar
  20. 20.
    Y. Liao and K. Sibold: Time-ordered perturbation theory on noncommutative space-time: Basic rules. Eur. Phys. J. C 25:469 (2002). [arXiv:hep-th/0205269].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Y. Liao and K. Sibold: Time-ordered perturbation theory on noncommutative space-time. II. Unitarity. Eur. Phys. J. C 25:479 (2002). [arXiv:hep-th/0206011].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    H.S. Snyder: Quantized Space-Time. Phys. Rev. 71:38 (1947).ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    H. Weyl: Gruppentheorie und Quantenmechanik. Hirzel, Leipzig 1928.MATHGoogle Scholar
  24. 24.
    G.C. Wick: The Evaluation of the Collision Matrix. Phys. Rev. 80:268–272 (1950).ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Gherardo Piacitelli
    • 1
  1. 1.I.P. “De Sandrinelli”TriesteItalia

Personalised recommendations