Skip to main content

DFR Perturbative Quantum Field Theory on Quantum Space Time, and Wick Reduction

  • Chapter
Book cover Rigorous Quantum Field Theory

Part of the book series: Progress in Mathematics ((PM,volume 251))

Summary

We discuss the perturbative approach à la Dyson to a quantum field theory with nonlocal self-interaction :φ⋆···⋆φ, according to Doplicher, Fredenhagen and Roberts (DFR). In particular, we show that the Wick reduction of nonlocally time-ordered products of Wick monomials can be performed as usual, and we discuss a very simple Dyson diagram.

Research partially supported by MIUR and GNAMPA-INdAM

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bahns: Perturbative Methods on the Noncommutative Minkowski Space. Doctoral thesis, DESY-THESIS-04-004, Hamburg, 2003.

    Google Scholar 

  2. D. Bahns: Ultraviolet Finiteness of the Averaged Hamiltonian on the Noncommutative Minkowski Space. To be published. [arXiv:hep-th/0405224].

    Google Scholar 

  3. D. Bahns, S. Doplicher, K. Fredenhagen and G. Piacitelli: On the Unitarity Problem in space/time noncommutative theories. Phys. Lett. B 533:178 (2002). [arXiv:hep-th/0201222].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. D. Bahns, S. Doplicher, K. Fredenhagen and G. Piacitelli: Ultraviolet finite quantum field theory on quantum space-time. Commun. Math. Phys. 237:221–241 (2003). [arXiv:hep-th/0301100].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. D. Bahns, S. Doplicher, K. Fredenhagen and G. Piacitelli: Field theory on noncommutative space-times: Quasiplanar Wick products. Phys. Rev. D 71:25022 (2005). [arXiv:hep-th/0408204].

    Article  ADS  MathSciNet  Google Scholar 

  6. E.R. Caianiello: Combinatorics and Renormalization in quantum Field Theory. W.A. Benjamin, Reading, Mass., 1973.

    Google Scholar 

  7. S. Denk and M. Schweda: Time ordered perturbation theory for non-local interactions: Applications to NCQFT. JHEP 309:32 (2003). [arXiv:hep-th/0306101].

    Article  ADS  MathSciNet  Google Scholar 

  8. B. DeWitt: Quantizing Geometry. In: Gravitation: An Introduction to Current Research (L. Witten, ed.). Wiley, New York, 1962.

    Google Scholar 

  9. S. Doplicher, K. Fredenhagen and J.E. Roberts: The quantum structure of space-time at the Planck scale and quantum fields. Commun. Math. Phys. 172:187–220 (1995). [arXiv:hep-th/0303037].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. F.J. Dyson: The Radiation Theories Of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75:486–502 (1949).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. R. Estrada, J.M. Gracia-Bondia and J. C. Varilly: On Asymptotic Expansions Of Twisted Products. J. Math. Phys. 30:2789–2796 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. R.P. Feynman: Space-Time Approach To Quantum Electrodynamics. Phys. Rev. 76:769–789 (1949).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M. Gell-Mann and F. Low: Bound States in Quantum Field Theory. Phys. Rev. 84:350–354 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. C.A. Mead: Possible Connection Between Gravitation and Fundamental Length. Phys. Rev. B 135:849–862 (1964).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. C.A. Mead: Walking the Planck Length through History. Letter to the editor, Phys. Today 54 N. 11 (2001).

    Google Scholar 

  16. J. von Neumann: Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104:570 (1931).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Piacitelli: Normal ordering of Operator Products on Noncommutative Space Time and Quantum Field Theory. Doctoral thesis, 2001.

    Google Scholar 

  18. G. Piacitelli: Non local theories: New rules for old diagrams. JHEP 0408 031 (2004). [arXiv:hep-th/0403055].

    Article  ADS  MathSciNet  Google Scholar 

  19. D. Rivier and E.C.G. Stueckelberg: A Convergent Expression for the Magnetic Moment of the Neutron. Letter to the Editor of Phys. Rev. 74:218 (1948), and references 2,3,4 therein.

    Google Scholar 

  20. Y. Liao and K. Sibold: Time-ordered perturbation theory on noncommutative space-time: Basic rules. Eur. Phys. J. C 25:469 (2002). [arXiv:hep-th/0205269].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Y. Liao and K. Sibold: Time-ordered perturbation theory on noncommutative space-time. II. Unitarity. Eur. Phys. J. C 25:479 (2002). [arXiv:hep-th/0206011].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. H.S. Snyder: Quantized Space-Time. Phys. Rev. 71:38 (1947).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. H. Weyl: Gruppentheorie und Quantenmechanik. Hirzel, Leipzig 1928.

    MATH  Google Scholar 

  24. G.C. Wick: The Evaluation of the Collision Matrix. Phys. Rev. 80:268–272 (1950).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Jacques Bros on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag

About this chapter

Cite this chapter

Piacitelli, G. (2007). DFR Perturbative Quantum Field Theory on Quantum Space Time, and Wick Reduction. In: de Monvel, A.B., Buchholz, D., Iagolnitzer, D., Moschella, U. (eds) Rigorous Quantum Field Theory. Progress in Mathematics, vol 251. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-7434-1_16

Download citation

Publish with us

Policies and ethics