Quantum Anosov Systems

  • Heide Narnhofer
Part of the Progress in Mathematics book series (PM, volume 251)


The concept of Anosov flows and of Kolmogorov systems can be translated from classical to quantum systems. It is shown that modifications of the concepts are necessary to keep the same clustering behavior as is typical for classical Anosov systems. With such modifications, Anosov structure appears rather naturally in a type III1 algebra. Here Anosov structure and Kolmogorov structure with respect to modular evolution are even equivalent. The Rindler wedge of quantum field theory offers a typical example.


Lyapunov Exponent Automorphism Group Invariant State Cluster Property Modular Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Araki and L. Zsido: Extension of the structure theorem of Borchers and its application to half-sided modular inclusions. arXiv:math.OA/0412061.Google Scholar
  2. 2.
    V.I. Arnold and A. Avez: Problemes Ergodiques de la Mecanique classique. Gauthier-Villars, Paris, 1967.MATHGoogle Scholar
  3. 3.
    J. Bisognano and E.H. Wichmann: On the duality condition for a Hermitian scalar field. J. Math. Phys. 16:985–1007 (1975).ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. Bisognano and E.H. Wichmann: On the duality condition of quantum fields. Jour. Math. Phys. 17:303–312 (1976).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    H.-J. Borchers: On modular inclusion and spectral condition. Lett. Math. Phys. 27:311–324 (1993).ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    H.-J. Borchers: On the revolutionization of quantum field theory by Tomita’s modular theory. Preprint ESI, 1999.Google Scholar
  7. 7.
    J. Bros, H. Epstein and U. Moschella: Analyticity properties and thermal effects for general quantum field theory on de Sitter space-time. Commun. Math. Phys. 196:535–570 (1998).ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    D. Buchholz, O. Dreyer, M. Florig and S.J. Summers: Geometric modular action and space-time symmetry groups. Rev. Math Phys. 12:475–560 (2000).MathSciNetMATHGoogle Scholar
  9. 9.
    G.G. Emch, H. Narnhofer, G.L. Sewell and W. Thirring: Anosov actions on noncommutative algebras. J. Math. Phys. 35/11:5582–5599 (1994).ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    L.D. Faddeev: Discrete Heisenberg-Weyl group and modular group. Lett. Math. Phys. 34:249–254 (1995).ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    B.O. Koopman and J. von Neumann: Dynamical systems of continuous spectra. N.A.S. Proc. 18:255–263 (1932).CrossRefMATHGoogle Scholar
  12. 12.
    R. Longo: Simple injective subfactors. Adv. math. 63:152–171 (1987).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    H. Narnhofer and W. Thirring: Quantum K-Systems. Commun. Math. Phys. 125:565–577 (1989).ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    H. Narnhofer: Kolmogorov systems and Anosov systems in quantum theory. IDAQP 4/1:85–119 (2001).MathSciNetMATHGoogle Scholar
  15. 15.
    H. Narnhofer: The Pauli principle for a quantum theory on T 2 with magnetic field. Rep. Math. Phys. 53:91–102 (2004).ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    J. von Neumann: Einige Sätze über messbare Abbildungen. Ann. Math. 33:574–586 (1932).CrossRefMATHGoogle Scholar
  17. 17.
    J. von Neumann: On rings of operators III. Ann. Math. 41:94–161 (1940).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    M.A. Rieffel: *-algebras associated with irrational rotations. Pac. J. Math. 93:415–429 (1981).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    M. Takesaki: Duality for crossed products and the structure of von Neumann algebras of type III. Acta Math. 131:249–310 (1973).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    H.J. Wiesbrock: Half sided modular inclusions of von Neumann algebras. Commun. Math. Phys. 157:83 (1993). Erratum Commun. Math. Phys. 184:683 (1997).ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Heide Narnhofer
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WienWien

Personalised recommendations