Renormalization Theory Based on Flow Equations

  • Christoph Kopper
Part of the Progress in Mathematics book series (PM, volume 251)


I give an overview over some work on rigorous renormalization theory based on the differential flow equations of the Wilson renormalization group. I first consider massive Euclidean ϕ 4 4 -theory. The renormalization proofs are achieved through inductive bounds on regularized Schwinger functions. I present relatively crude bounds which are easily proven, and sharpened versions (which seem to be optimal as regards large momentum behaviour). Then renormalizability statements in Minkowski space are presented together with analyticity properties of the Schwinger functions. Finally I give a short description of further results.


Renormalization Group Minkowski Space Flow Equation External Momentum Renormalization Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Wilson: Renormalization group and critical phenomena I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4:3174–3183 (1971). K. Wilson: Renormalization group and critical phenomena II. Phase cell analysis of critical behaviour. Phys. Rev. B 4:3184–3205 (1971). K. Wilson and J.B. Kogut: The Renormalization Group and the ɛ-Expansion. Phys. Rep. C 12:75–199 (1974).ADSCrossRefMATHGoogle Scholar
  2. 2.
    F.J. Wegner and A. Houghton: Renormalization Group Equations for Critical Phenomena. Phys. Rev. A 8:401–412 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    J. Polchinski: Renormalization and Effective Lagrangians. Nucl. Phys. B 231:269–295 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    G. Keller, Ch. Kopper and M. Salmhofer: Perturbative Renormalization and effective Lagrangians in ϕ 44. Helv. Phys. Acta 65:32–52 (1991). See also: Ch. Kopper: Renormierungstheorie mit Flußgleichungen. Shaker-Verlag, Aachen, 1998. M. Salmhofer: Renormalization, an Introduction. Springer, Berlin-Heidelberg-New York, 1999.MathSciNetGoogle Scholar
  5. 5.
    V.F. Müller: Perturbative Renormalization by Flow Equations. Rev. Math. Phys. 15:491–558 (2003).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    J. Zinn-Justin: Quantum Field Theory and Critical Phenomena. Clarendon Press, Oxford, 4th ed., 2002.CrossRefMATHGoogle Scholar
  7. 7.
    G. Chalmers: Extended BPH Renormalization of Cutoff Scalar Field Theories. Phys. Rev. D 53:7143–7156 (1996).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ch. Kopper and F. Meunier: Large Momentum Bounds from Flow Equations. Ann. Henri Poincaré 3:435–449 (2002).ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    G. Keller: Local Borel summability of Euclidean Φ 44: A simple Proof via Differential Flow Equations. Commun. Math. Phys. 161:311–323 (1994).ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    C. de Calan and V. Rivasseau: Local existence of the Borel transform in Euclidean Φ 44. Commun. Math. Phys. 82:69–100 (1981).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    G. Keller, Ch. Kopper and C. Schophaus: Perturbative Renormalization with Flow Equations in Minkowski Space. Helv. Phys. Acta 70:247–274 (1997).MathSciNetMATHGoogle Scholar
  12. 12.
    E. Speer: Generalized Feynman Amplitudes. Ann. of Math. Studies 62, Princeton Univ. Press, 1969.Google Scholar
  13. 13.
    P.K. Mitter and T.R. Ramadas: The two-dimensional O(N) nonlinear σ-model: renormalization and effective actions. Commun. Math. Phys. 122:575–596 (1989).ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    G. Keller and Ch. Kopper: Perturbative Renormalization of Massless Φ 44 with Flow Equations. Commun. Math. Phys. 161:515–532 (1994).ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    G. Keller and Ch. Kopper: Perturbative Renormalization of Composite Operators via Flow Equations I. Commun. Math. Phys. 148:445–467 (1992).ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    G. Keller and Ch. Kopper: Perturbative Renormalization of Composite Operators via Flow Equations II: Short distance expansion. Commun. Math. Phys. 153:245–276 (1993).ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    G. Keller and Ch. Kopper: Perturbative Renormalization of QED via flow equations. Phys. Lett. B 273:323–332 (1991). G. Keller and Ch. Kopper: Renormalizability Proof for QED Based on Flow Equations. Commun. Math. Phys. 176:193–226 (1996).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Ch. Kopper and V.F. Müller: Renormalization Proof for Spontaneously Broken Yang-Mills Theory with Flow Equations. Commun. Math. Phys. 209:477–516 (2000). See also [5], where the proof presented in the previous paper is simplified.ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Ch. Kopper, V.F. Müller and Th. Reisz: Temperature Independent Renormalization of Finite Temperature Field Theory. Ann. Henri Poincaré 2:387–402 (2001).ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ch. Wieczerkowski: Symanzik’s Improved actions from the viewpoint of the Renormalization Group. Commun. Math. Phys. 120:148–176 (1988). G. Keller: The Perturbative Construction of Symanzik’s improved Action for φ 44 and QED 4. Helv. Phys. Acta 66:453–470 (1993).ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    C. Kim: A Renormalization Group Flow Approach to Decoupling and Irrelevant Operators. Ann. Phys. (N.Y.) 243:117–143 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    C. Bagnuls and C. Bervillier: Exact Renormalization Group Equations, An Introductory Review. Phys. Rep. 348:91 (2001).ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Christoph Kopper
    • 1
  1. 1.Centre de Physique Théorique de l’Ecole PolytechniquePalaiseauFrance

Personalised recommendations