Advertisement

On the Relativistic KMS Condition for the P(ø)2 Model

  • Christian Gérard
  • Christian D. Jäkel
Part of the Progress in Mathematics book series (PM, volume 251)

Summary

The relativistic KMS condition introduced by Bros and Buchholz provides a link between quantum statistical mechanics and quantum field theory. We show that for the P(ø)2 model at positive temperature, the two-point function for fields satisfies the relativistic KMS condition.

Keywords

Selfadjoint Operator Quantum Statistical Mechanic Space Translation Euclidean Measure Reconstruction Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Araki: A lattice of von Neumann algebras associated with the quantum theory of a free Bose field. J. Math. Phys. 4:1343–1362 (1963).ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    H. Araki: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. Res. Int. Math. Soc. (RIMS) 9:165–209 (1973).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    H. Araki: Positive cone, Radon-Nikodym theorems, relative Hamiltonian and the Gibbs condition in statistical mechanics. An application of Tomita-Takesaki theory. In C*-algebras and their applications to Statistical Mechanics and Quantum Field Theory (ed.: D. Kastler). North Holland, 1976.Google Scholar
  4. 4.
    L. Birke and J. Fröhlich: KMS, etc. Rev. Math. Phys. 14:829–871 (2002).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    O. Bratteli and D.W. Robinson: Operator Algebras and Quantum Statistical Mechanics I, II. Springer-Verlag, New York, Heidelberg, Berlin, 1981.CrossRefMATHGoogle Scholar
  6. 6.
    J. Bros and D. Buchholz: Towards a relativistic KMS condition. Nucl. Phys. B 429:291–318 (1994).ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    J. Bros and D. Buchholz: Axiomatic analyticity properties and representations of particles in thermal quantum field theory, New problems in the general theory of fields and particles. Ann. l’Inst. H. Poincaré 64:495–521 (1996).MathSciNetMATHGoogle Scholar
  8. 8.
    J. Derezinski, V. Jaksic and C.-A. Pillet: Perturbation theory of W*-dynamics, Liouvilleans and KMS states. Rev. Math. Phys. 15:447–48. (2003).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    J. Fröhlich: The reconstruction of quantum fields from Euclidean Green’s functions at arbitrary temperatures. Helv. Phys. Acta 48:355–363 (1975).MathSciNetGoogle Scholar
  10. 10.
    J. Fröhlich: Unbounded, symmetric semigroups on a separable Hilbert space are essentially selfadjoint. Adv. in Appl. Math. 1:237–256 (1980).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    C. Gérard and C.D. Jäkel: Thermal quantum fields with spatially cut-off interactions in 1+1 space-time dimensions. To appear in Journal of Funct. Anal., 2005.Google Scholar
  12. 12.
    C. Gérard and C.D. Jäkel: Thermal quantum fields without cutoffs in 1+1 spacetime dimensions. arXiv math-ph/0403047. To appear in Rev. Math. Phys. Google Scholar
  13. 13.
    J. Glimm and A. Jaffe: Quantum Physics, A Functional Point of View. Springer, 1981.Google Scholar
  14. 14.
    R. Haag, N.M. Hugenholtz and M. Winnink: On the equilibrium states in quantum statistical mechanics. Comm. Math. Phys. 5:215–236 (1967).ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    R. Haag, D. Kastler and E.B. Trych-Pohlmeyer: Stability and equilibrium states. Comm. Math. Phys. 38:173–193 (1974).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    E.P. Heifets and E.P. Osipov: The energy momentum spectrum in the P(ϕ)2 quantum field theory. Comm. Math. Phys. 56:161–172 (1977).ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    R. Höegh-Krohn: Relativistic quantum statistical mechanics in two-dimensional space-time. Comm. Math. Phys. 38:195–224 (1974).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    C.D. Jäkel: Decay of spatial correlations in thermal states. Ann. l’Inst. H. Poincaré 69:425–440 (1998).MathSciNetMATHGoogle Scholar
  19. 19.
    C.D. Jäkel: The Reeh-Schlieder property for thermal field theories. J. Math. Phys. 41:1745–1754 (2000).ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    R.V. Kadison and J.R. Ringrose: Fundamentals of the Theory of Operator Algebras II. Academic Press, New York, 1986.MATHGoogle Scholar
  21. 21.
    A. Klein and L. Landau: Stochastic processes associated with KMS states. J. Funct. Anal. 42:368–428 (1981).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    A. Klein and L. Landau: Construction of a unique selfadjoint generator for a symmetric local semigroup. J. Funct. Anal. 44:121–137 (1981).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    R. Kubo: Statistical mechanical theory of irreversible processes I. J. Math. Soc. Jap. 12:570–586 (1957).ADSGoogle Scholar
  24. 24.
    P.C. Martin and J. Schwinger: Theory of many-particle systems. I. Phys. Rev. 115:1342–1373 (1959).ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    M. Reed and B. Simon: Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-adjointness. Academic Press, 1975.Google Scholar
  26. 26.
    B. Simon: The P(ϕ)2 Euclidean (Quantum) Field Theory. Princeton University Press, 1974.Google Scholar
  27. 27.
    R.F. Streater and A.S. Wightman: PCT, Spin and Statistics and all that. Benjamin, New York, 1964.MATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Christian Gérard
    • 1
  • Christian D. Jäkel
    • 2
  1. 1.Université Paris Sud XIOrsayFrance
  2. 2.ETH Zürich, HönggerbergZürichSwitzerland

Personalised recommendations