• Anne Boutet de Monvel
  • Detlef Buchholz
  • Daniel Iagolnitzer
  • Ugo Moschella
Part of the Progress in Mathematics book series (PM, volume 251)


Local Gauge Symmetry Relativistic Quantum Field Theory Noncommutative Spacetimes Scattering Operator Local Quantum Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.D. Birrell and P.C.W. Davies: Quantum Fields in Curved Space. Cambridge University Press, Cambridge, 1982.CrossRefMATHGoogle Scholar
  2. 2.
    N.N. Bogoliubov, A.A. Logunov, A.I. Oksak and I.T. Todorov: General Principles of Quantum Field Theory. Kluwer, Dordrecht, 1990.CrossRefMATHGoogle Scholar
  3. 3.
    H.-J. Borchers: On Structure of the Algebra of Field Operators. Nuovo Cimento 24:214 (1962).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    K. Fredenhagen: Quantum Field Theory on non-trivial space-times. In: Mathematical Physics towards the 21st century (R.N. Sen and A. Gersten, eds.). Ben-Gurion Univ. Negev Press, Beer-Sheva, 1993. See also all the articles of the section Quantum Field Theory in the Encyclopaedia of Mathematical Physics, Elsevier, Oxford, 2006.Google Scholar
  5. 5.
    J. Glimm and A. Jaffe: Quantum Physics. A Functional Integral Point of View. Springer, Berlin, 1981.MATHGoogle Scholar
  6. 6.
    R. Haag: Local Quantum Physics. Springer, Berlin, 1992.CrossRefMATHGoogle Scholar
  7. 7.
    D. Iagolnitzer: Scattering in quantum field theories: The Axiomatic and constructive approaches. Princeton University Press, Princeton, 1992.MATHGoogle Scholar
  8. 8.
    R. Jost: The general theory of quantized fields. AMS, Providence, 1965.MATHGoogle Scholar
  9. 9.
    H. Lehmann, K. Symanzik and W. Zimmermann: On the formulation of quantized field theories. Nuovo Cimento 1:205–225 (1955) and 6:319–333 (1957).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    A. Martin: Scattering Theory: Unitarity, Analyticity and Crossing. Lecture Notes in Physics, Springer, Berlin, 1969.Google Scholar
  11. 11.
    R.F. Streater and A.S. Wightman: PCT, Spin and Statistics, and all that. Princeton University Press, Princeton, 1964.MATHGoogle Scholar
  12. 12.
    F. Strocchi: Selected topics on the general properties of quantum field theory. World Sci. Lect. Notes Phys. 51:1 (1993).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    R.M. Wald: Quantum field theory in curved space-time and black hole thermodynamics. Chicago University Press, Chicago, 1995.Google Scholar
  14. 14.
    A.S. Wightman and L. Garding: Fields as operator-valued distributions in relativistic quantum theory. Arkiv For Fysik 28:129 (1964).Google Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Anne Boutet de Monvel
    • 1
  • Detlef Buchholz
    • 2
  • Daniel Iagolnitzer
    • 3
  • Ugo Moschella
    • 4
  1. 1.Institut de Mathématiques de JussieuUniversité Paris 7ParisFrance
  2. 2.Institut für Theoretische PhysikUniversität GöttingenGöttingenGermany
  3. 3.Service de Physique ThéoriqueCEA/Saclay, Orme des MerisiersGif-sur-Yvette cedexFrance
  4. 4.Dipartimento di Fisica e MatematicaUniversità dell’InsubriaComoItaly

Personalised recommendations