Advertisement

Influencing energy expenditure and substrate utilisation

  • John C. Clapham
  • Jonathan R. Arch
Part of the Milestones in Drug Therapy book series (MDT)

Abstract

Most of the anti-obesity drugs used over the past 50 years, and one (sibutramine) of the two globally licensed for long-term use today have acted centrally. With the exception of sibutramine (and the possible further approval of rimonabant), however, all of these have been withdrawn due to concerns over toxicity or abuse potential, or their use is greatly restricted. This is one reason why pharmaceutical companies are seeking drugs that act peripherally to influence energy expenditure, substrate utilisation or both. Fortunately, studies on genetically modified mice are revealing many new targets that fall into these categories [1].

Keywords

Mitochondrial Biogenesis Triacylglycerol Synthesis Anorectic Drug Anorectic Agent Expert Opin Investig Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arch JR (2002) Lessons in obesity from transgenic animals. J Endocrinol Invest 25: 867–875PubMedGoogle Scholar
  2. 2.
    Clapham JC, Arch JRS, Tadayyon M (2001) Anti-obesity drugs: A critical review of current therapies and future opportunities. Pharmacol Ther 89: 81–121PubMedCrossRefGoogle Scholar
  3. 3.
    Luque CA, Rey JA (2002) The discovery and status of sibutramine as an anti-obesity drug. Eur J Pharmacol 440: 119–128PubMedCrossRefGoogle Scholar
  4. 4.
    Lam TK, Schwartz GJ, Rossetti L (2005) Hypothalamic sensing of fatty acids. Nat Neurosci 8: 579–584PubMedCrossRefGoogle Scholar
  5. 5.
    Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG, Boyce V, Howard BV, Bogardus C (1988) Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 318: 467–472PubMedCrossRefGoogle Scholar
  6. 6.
    Levine JA, Eberhardt NL, Jensen MD (1999) Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283: 212–214PubMedCrossRefGoogle Scholar
  7. 7.
    Buscemi S, Verga S, Caimi G, Cerasola G (2005) Low relative resting metabolic rate and body weight gain in adult Caucasian Italians. Int J Obes Relat Metab Disord 29: 287–291CrossRefGoogle Scholar
  8. 8.
    Astrup A, Gotzsche PC, van de Werken K, Ranneries C, Toubro S, Raben A, Buemann B (1999) Meta-analysis of resting metabolic rate in formerly obese subjects. Am J Clin Nutr 69: 1117–1122PubMedGoogle Scholar
  9. 9.
    Blaak EE, Wolffenbuttel BH, Saris WH, Pelsers MM, Wagenmakers AJ (2001) Weight reduction and the impaired plasma-derived free fatty acid oxidation in type 2 diabetic subjects. J Clin Endocrinol Metab 86: 1638–1644PubMedCrossRefGoogle Scholar
  10. 10.
    Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA (2000) Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 279: E1039–1044PubMedGoogle Scholar
  11. 11.
    Tanner CJ, Barakat HA, Dohm GL, Pories WJ, MacDonald KG, Cunningham PR, Swanson MS, Houmard JA (2002) Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab 282: E1191–1196PubMedGoogle Scholar
  12. 12.
    Arch JR (2002) β3-Adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol 440: 99–107PubMedCrossRefGoogle Scholar
  13. 13.
    Durrant ML, Garrow JS, Royston P, Stalley SF, Sunkin S, Warwick PM (1980) Factors influencing the composition of the weight lost by obese patients on a reducing diet. Brit J Nutrition 44: 275–285CrossRefGoogle Scholar
  14. 14.
    Darimont C, Turini M, Epitaux M, Zbinden I, Richelle M, Montell E, Ferrer-Martinez A, Mace K (2004) beta3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria diet. Nutr Metab (Lond) 1: 4CrossRefGoogle Scholar
  15. 15.
    Padwal R, Li SK, Lau DC (2003) Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Int J Obes Relat Metab Disord 27: 1437–1446PubMedCrossRefGoogle Scholar
  16. 16.
    Schiffelers SLH, Blaak EE, Saris WHM, van Baak MA (2000) In vivoβ3adrenergic stimulation of human thermogenesis and lipid use. Clin Pharmacol Therapeutics 67: 558–566Google Scholar
  17. 17.
    Blundell JE, Stubbs RJ, Hughes DA, Whybrow S, King NA (2003) Cross talk between physical activity and appetite control: does physical activity stimulate appetite? Proc Nutr Soc 62: 651–661PubMedCrossRefGoogle Scholar
  18. 18.
    Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77: 731–758PubMedGoogle Scholar
  19. 19.
    Bray GA (1969) Calorigenic effect of human growth hormone in obesity. J Clin Endocrinol Metab 29: 119–122PubMedCrossRefGoogle Scholar
  20. 20.
    Silva JE (2003) The thermogenic effect of thyroid hormone and its clinical implications. Ann Intern Med 139: 205–213PubMedGoogle Scholar
  21. 21.
    Brillon DJ, Zheng B, Campbell RG, Matthews DE (1995) Effect of cortisol on energy expenditure and amino acid metabolism in humans. Am J Physiol 268: E501–513PubMedGoogle Scholar
  22. 22.
    Silvestri E, Schiavo L, Lombardi A, Goglia F (2005) Thyroid hormones as molecular determinants of thermogenesis. Acta Physiol Scand 184: 265–283PubMedCrossRefGoogle Scholar
  23. 23.
    Grover GJ, Mellstrom K, Ye L, Malm J, Li YL, Bladh LG, Sleph PG, Smith MA, George R, Vennstrom B et al. (2003) Selective thyroid hormone receptor-β activation: a strategy for reduction of weight, cholesterol, and lipoprotein (a) with reduced cardiovascular liability. Proc Natl Acad Sci USA 100: 10067–10072PubMedCrossRefGoogle Scholar
  24. 24.
    Larsen TM, Toubro S, van Baak MA, Gottesdiener KM, Larson P, Saris WH, Astrup A (2002) Effect of a 28-d treatment with L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am J Clin Nutr 76: 780–788PubMedGoogle Scholar
  25. 25.
    Greenway FL, De Jonge L, Blanchard D, Frisard M, Smith SR (2004) Effect of a dietary herbal supplement containing caffeine and ephedra on weight, metabolic rate, and body composition. Obes Res 12: 1152–1157PubMedCrossRefGoogle Scholar
  26. 26.
    Russell ST, Hirai K, Tisdale MJ (2002) Role of β3-adrenergic receptors in the action of a tumour lipid mobilizing factor. Br J Cancer 86: 424–428PubMedCrossRefGoogle Scholar
  27. 27.
    Herd C, Wittert G, Caterson I, Profietto J, Strauss B, Prins J, Stocks A, Vos A, Belyea C (2005) The effect of AOD9604 on weight loss in obese adults: results of a randomized, double-blind, placebo-controlled, multicenter study. Obesity Res 13 suppl: A27Google Scholar
  28. 28.
    Proietto J, Thorburn AW (2003) The therapeutic potential of leptin. Expert Opin Investig Drugs 12: 373–378PubMedCrossRefGoogle Scholar
  29. 29.
    Maneuf Y, Higginbottom M, Pritchard M, Lione L, Ashford MLJ, Richardson PJ (2004) Small molecule leptin mimetics overcome leptin resistance in obese rats. Fundam Clin Pharmacol 18Suppl 1: 83Google Scholar
  30. 30.
    Bluher S, Ziotopoulou M, Bullen JW Jr, Moschos SJ, Ungsunan L, Kokkotou E, Maratos-Flier E, Mantzoros CS (2004) Responsiveness to peripherally administered melanocortins in lean and obese mice. Diabetes 53: 82–90PubMedCrossRefGoogle Scholar
  31. 31.
    Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26: 439–451PubMedCrossRefGoogle Scholar
  32. 32.
    Morton NM, Paterson JM, Masuzaki H, Holmes MC, Staels B, Fievet C, Walker BR, Flier JS, Mullins JJ, Seckl JR (2004) Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 beta-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes 53: 931–938PubMedCrossRefGoogle Scholar
  33. 33.
    Arch JRS, Wang SJY, Birtles S, Smith DM, Turnbull A (2005) Effects of an inhibitor of 11betahydroxysteroid dehydrogenase type 1 inhibitor on energy balance and glucose homeostasis in dietinduced obesity. Diabetologia 48: A238Google Scholar
  34. 34.
    Clapham JC (2004) Treating obesity: pharmacology of energy expenditure. Curr Drug Targets 5: 309–323PubMedCrossRefGoogle Scholar
  35. 35.
    Clapham JC, Arch JRS, Chapman H, Haynes AC, Lister CA, Moore GBT, Piercy V, Smith SA, Beeley LJ, Godden RJ et al. (2000) Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406: 415–418PubMedCrossRefGoogle Scholar
  36. 36.
    Nedergaard J, Cannon B (2003) The ‘novel’ ‘uncoupling’ proteins UCP2 and UCP3: what do they really do? Pros and cons for suggested functions. Exp Physiol 88: 65–84PubMedCrossRefGoogle Scholar
  37. 37.
    Ruderman N, Prentki M (2004) AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nat Rev Drug Discov 3: 340–351PubMedCrossRefGoogle Scholar
  38. 38.
    Buhl ES, Jessen N, Pold R, Ledet T, Flyvbjerg A, Pedersen SB, Pedersen O, Schmitz O, Lund S (2002) Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome. Diabetes 51: 2199–2206PubMedCrossRefGoogle Scholar
  39. 39.
    Camacho RC, Pencek RR, Lacy DB, James FD, Donahue EP, Wasserman DH (2005) Portal venous 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion overcomes hyperinsulinemic suppression of endogenous glucose output. Diabetes 54: 373–382PubMedCrossRefGoogle Scholar
  40. 40.
    Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24: 78–90PubMedCrossRefGoogle Scholar
  41. 41.
    Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, Takahashi N, Kawada T, Miyoshi M, Ezaki O, Kakizuka A (2003) PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci USA 100: 12378–12383PubMedCrossRefGoogle Scholar
  42. 42.
    Willy PJ, Murray IR, Qian J, Busch BB, Stevens WC Jr, Martin R, Mohan R, Zhou S, Ordentlich P, Wei P et al. (2004) Regulation of PPARgamma coactivator 1alpha (PGC-1alpha) signaling by an estrogen-related receptor alpha (ERRalpha) ligand. Proc Natl Acad Sci USA 101: 8912–8917PubMedCrossRefGoogle Scholar
  43. 43.
    Luo J, Sladek R, Carrier J, Bader JA, Richard D, Giguere V (2003) Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor alpha. Mol Cell Biol 23: 7947–7956PubMedCrossRefGoogle Scholar
  44. 44.
    Berger JP, Akiyama TE, Meinke PT (2005) PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26: 244–251PubMedCrossRefGoogle Scholar
  45. 45.
    Tenenbaum A, Motro M, Fisman EZ (2005) Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons. Cardiovasc Diabetol 4: 14PubMedCrossRefGoogle Scholar
  46. 46.
    Tiraby C, Langin D (2003) Conversion from white to brown adipocytes: a strategy for the control of fat mass? Trends Endocrinol Metab 14: 439–441PubMedCrossRefGoogle Scholar
  47. 47.
    Obici S, Rossetti L (2003) Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology 144: 5172–5178PubMedCrossRefGoogle Scholar
  48. 48.
    Westerterp-Plantenga MS, Kovacs EM (2002) The effect of (-)-hydroxycitrate on energy intake and satiety in overweight humans. Int J Obes Relat Metab Disord 26: 870–872PubMedCrossRefGoogle Scholar
  49. 49.
    Ohia SE, Opere CA, LeDay AM, Bagchi M, Bagchi D, Stohs SJ (2002) Safety and mechanism of appetite suppression by a novel hydroxycitric acid extract (HCA-SX). Mol Cell Biochem 238: 89–103PubMedCrossRefGoogle Scholar
  50. 50.
    Harwood HJ Jr (2004) Acetyl-CoA carboxylase inhibition for the treatment of metabolic syndrome. Curr Opin Investig Drugs 5: 283–289PubMedGoogle Scholar
  51. 51.
    Tu Y, Thupari JN, Kim EK, Pinn ML, Moran TH, Ronnett GV, Kuhajda FP (2005) C75 alters central and peripheral gene expression to reduce food intake and increase energy expenditure. Endocrinology 146: 486–493PubMedCrossRefGoogle Scholar
  52. 52.
    Rohrbach KW, Han S, Gan J, O’Tanyi EJ, Zhang H, Chi CL, Taub R, Largent BL, Cheng D (2005) Disconnection between the early onset anorectic effects by C75 and hypothalamic fatty acid synthase inhibition in rodents. Eur J Pharmacol 511: 31–41PubMedCrossRefGoogle Scholar
  53. 53.
    Jiang G, Li Z, Liu F, Ellsworth K, Dallas-Yang Q, Wu M, Ronan J, Esau C, Murphy C, Szalkowski D et al. (2005) Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoylCoA desaturase-1. J Clin Invest 115: 1030–1038PubMedCrossRefGoogle Scholar
  54. 54.
    Thuresson ER (2004) Inhibition of glycerol-3-phosphate acyltransferase as a potential treatment for insulin resistance and type 2 diabetes. Curr Opin Investig Drugs 5: 411–418PubMedGoogle Scholar
  55. 55.
    Lindén D, William-Olsson L, Ahnmark A, Ekroos K, Hallberg C, Peilot-Sjögren H, Becker B, Svensson L, Clapham JC, Oscarsson J et al. (2006) Liver directed overexpression of mitochondrial glycerol-3-phosphate acyltransferase results in hepatic steatosis, increased triglyceride secretion and reduced fatty acid oxidation. FASEB Journal 20: 434–443PubMedCrossRefGoogle Scholar
  56. 56.
    Chen HC, Farese RV Jr (2005) Inhibition of triglyceride synthesis as a treatment strategy for obesity: lessons from DGAT1-deficient mice. Arterioscler Thromb Vasc Biol 25: 482–486PubMedCrossRefGoogle Scholar
  57. 57.
    Taylor SD, Hill B (2004) Recent advances in protein tyrosine phosphatase 1B inhibitors. Expert Opin Investig Drugs 13: 199–214PubMedCrossRefGoogle Scholar
  58. 58.
    Kim MS, Lee KU (2005) Role of hypothalamic 5′-AMP-activated protein kinase in the regulation of food intake and energy homeostasis. J Mol Med 83: 514–520PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • John C. Clapham
    • 1
  • Jonathan R. Arch
    • 2
  1. 1.CVG I BioscienceAstra ZenecaMacclesfieldUK
  2. 2.Clore LaboratoryUniversity of BuckinghamBuckinghamUK

Personalised recommendations