Regulation of energy balance — towards rational drug design in obesity

  • Joanne A. Harrold
  • John P. H. Wilding
Part of the Milestones in Drug Therapy book series (MDT)


Body weight and fat mass are tightly regulated around a’ set point’. This control of energy balance depends critically on the central nervous system (CNS). The brain regulates many aspects of energy homeostasis, adjusting both the drive to eat and energy expenditure in response to the status of body energy stores and the availability of food. The CNS regions that control energy homeostasis are accessible to numerous circulating hormones and other factors. Within the CNS itself are specific neuronal populations that recognise these signals and act in a network to integrate the multiple inputs, and help determine energy intake and expenditure.


Ghrelin Level Nucleus Tractus Solitarius Rational Drug Design Melanocortin System Nucleus Tractus Solitarius Neurone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N et al. (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393: 72–76PubMedGoogle Scholar
  2. 2.
    Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS, Couceyro PR, Kuhar MJ, Saper CB, Elmquist JK (1998) Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21: 1375–1378PubMedGoogle Scholar
  3. 3.
    Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB (1998) Distribution of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 395: 535–547PubMedGoogle Scholar
  4. 4.
    Elmquist JK, Elias C, Saper C (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22: 221–232PubMedGoogle Scholar
  5. 5.
    Ono T, Nishino H, Sasaka K, Muramoto K, Yano I, Simpson A (1978) Paraventricular nucleus connections to the spinal cord and pituitary. Neurosci Lett 10: 141–146Google Scholar
  6. 6.
    Shor-Posner G, Azar AP, Insinga S, Leibowitz SF (1986) Deficits in the control of food intake after paraventricular nucleus lesions. Physiol Behav 35: 883–890Google Scholar
  7. 7.
    Stellar E (1954) The physiology of motivation. Psychol Rev 61: 5PubMedGoogle Scholar
  8. 8.
    Meister B, Ceccatelli S, Hokfelt T, Anden NE, Theodorsson E (1989) Neurotransmitters, neuropeptides and binding sites in the rat mediobasal hypothalamus: effects of monosodium glutamate (MSG) lesions. Exp Brain Res 76: 343–368PubMedGoogle Scholar
  9. 9.
    Broberger C, Johansen J, Johasson C, Schalling M, Hokfelt T (1998) The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic and monosodium glutamatetreated mice. Proc Natl Acad Sci 95: 15043–15048PubMedGoogle Scholar
  10. 10.
    Horvath TL, Diano S, van den Pol AN (1999) Synaptic interaction between hypocretin (orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J Neurosci 19: 1072–1087PubMedGoogle Scholar
  11. 11.
    Hu YH, Bloomquist BT, Cornfield LJ, DeCarr LB, Flores-Riveros JR, Friedman L, Jiang PL, Lewis-Higgins L, Sadlowski Y, Schaefer J et al. (1996) Identification of a novel hypothalamic neuropeptide Y receptor associated with feeding behavior. J Biol Chem 271: 26315–26319PubMedGoogle Scholar
  12. 12.
    Bernardis LL, Bellinger LL (1996) The lateral hypothalamic area revisited: Ingestion behavior. Neurosci Biobehavior Rev 20: 189–287Google Scholar
  13. 13.
    Kalra SP, Dube MG, Pu SY, Xu B, Horvath TL, Kalra PS (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20: 68–100PubMedGoogle Scholar
  14. 14.
    Mountjoy K, Mortrud M, Low M, Simerly R, Cone R (1994) Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol 8: 1298–1308PubMedGoogle Scholar
  15. 15.
    Grill H, Ginsberg A, Seeley R, Kaplan J (1998) Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weight. J Neurosci 18: 10128–10135PubMedGoogle Scholar
  16. 16.
    Hyde TM, Miselis RR (1983) Effects of area postrema caudal medial nucleus of solitary tract lesions on food intake and body weight. Am J Phsyiol 244: R577–R587Google Scholar
  17. 17.
    Allen YS, Adrian TE, Allen JM, Tatemoto K, Crow TJ, Bloom SR, Polak JM (1983) Neuropeptide Y distribution in rat brain. Sci 221: 877–879Google Scholar
  18. 18.
    Stanley BG, Daniel DR, Chin AS, Leibowitz SF (1985) Paraventricular nucleus injections of peptide YY and neuropeptideY preferentially enhance carbohydrate ingestion. Peptides 6: 1205–1211PubMedGoogle Scholar
  19. 19.
    Turnbull AV, Ellershaw L, Masters DJ, Birtles S, Boyer S, Carroll D, Clarkson P, Loxham SJ, McAulay P, Teague JL et al. (2002) Selective antagonism of the NPY Y5 receptor does not have a major effect on feeding in rats. Diabetes 51: 2441–2449PubMedGoogle Scholar
  20. 20.
    Beck-Sickinger AG, Jung G (1995) Structure-activity relationships of neuropeptide Y analogues with respect to Y1 and Y2 receptors. Biopolymers 37: 123–142PubMedGoogle Scholar
  21. 21.
    Wang J, Leibowitz KL (1997) Central insulin inhibits galanin and neuropeptide Y gene expression and peptide release in intact rats. Brain Res 777: 231–236PubMedGoogle Scholar
  22. 22.
    Widdowson PS, Upton R, Henderson L, Buckingham R, Wilson S, Williams G (1997) Reciprocal regional changes in brain NPY receptor density during dietary restriction and dietary-induced obesity in the rat. Brain Res 774: 1–10PubMedGoogle Scholar
  23. 23.
    Kawauchi H, Kawazoe I, Tsubokawa M, Kishida M, Baker BI (1983) Characterization of melanin-concentrating hormone in chum salmon pituitaries. Nature 305: 321–323PubMedGoogle Scholar
  24. 24.
    Presse F, Nahon JL, Fischer WH, Vale W (1990) Structure of the human melanin concentrating hormone mRNA. Mol Endocrinol 4: 632–637PubMedGoogle Scholar
  25. 25.
    Vaughan JM, Fischer WH, Hoeger C, Rivier J, Vale W (1989) Characterization of melanin-concentrating hormone from rat hypothalamus. Endocrinology 125: 1660–1665PubMedGoogle Scholar
  26. 26.
    Naito N, Kawazoe I, Nakai Y, Kawauchi H (1988) Melanin-concentrating hormone-like immunoreactive material in the rat hypothalamus; charcterization and subcellular localization. Cell Tissue Res 253: 291–295PubMedGoogle Scholar
  27. 27.
    Skofitsch G, Jacobowitz DM, Zamir N (1985) Immunohistochemical localization of melanin-concentrating hormone-like peptide in the rat brain. Brain Res Bull 15: 635–649PubMedGoogle Scholar
  28. 28.
    Elias CF, Lee CE, Kelly JF, Ahima RS, Kuhar M, Saper CB, Elmquist JK (2001) Characterization of CART neurons in the rat and human hypothalamus. J Comp Neurol 432: 1–19PubMedGoogle Scholar
  29. 29.
    Broberger C (1999) Hypothalamic cocaine-and amphetamin-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Res 848: 101–113PubMedGoogle Scholar
  30. 30.
    Tan CP, Sano H, Iwaasa H, Pan J, Sailer AW, Hreniuk DL, Feighner SD, Palyha OC, Pong SS, Figueroa DJ et al. (2002) Melanin-concentrating hormone receptor subtypes 1 and 2: species-specific gene expression. Genomics 79: 785–792PubMedGoogle Scholar
  31. 31.
    Chambers J, Ames RS, Bergsma D, Muir A, Fitzgerald LR, Hervieu G, Dytko GM, Foley JJ, Martin J, Liu WS et al. (1999) Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 400: 261–265PubMedGoogle Scholar
  32. 32.
    Hervieu GJ, Cluderay JE, Harrison D, Meakin J, Maycox P, Nasir S, Leslie RA (2000) The distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) receptor gene, slc-1, in the central nervous system of the rat. Eur J Neurosci 12: 1191–1216Google Scholar
  33. 33.
    Tsukamura H, Thompson RC, Tsukahara S, Ohkura S, Maekawa F, Morivama R, Niwa Y, Foster DL, Maeda K (2000) Intracerebroventricular administration of melanin-concentrating hormone suppresses pulsatile luteinising hormone release in the female rat. J Neuroendocrinol 12: 529–534PubMedGoogle Scholar
  34. 34.
    An S, Cutler G, Zhao JJ, Huang SG, Tian H, Li W, Liang L, Rich M, Bakleh A, Du J et al. (2001) Identification and characterization of a melanin-concentrating hormone receptor. Proc Natl Acad Sci USA 98: 7576–7581PubMedGoogle Scholar
  35. 35.
    Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek R, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380: 243–247PubMedGoogle Scholar
  36. 36.
    Rossi M, Choi SJ, O’Shea D, Miyoshi T, Ghatei MA, Bloom SR (1997) Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight. Endocrinol 138: 351–355Google Scholar
  37. 37.
    Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Hier JS, Maratos-Flier E (2001) Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest 107: 379–386PubMedGoogle Scholar
  38. 38.
    Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E (1998) Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396: 670–673PubMedGoogle Scholar
  39. 39.
    Segal-Lierberman G, Bradley RL, Kokkotou E, Carlson M, Trombly DJ, Wang X, Bates S, Myers MG Jr, Flier JS, Maratos-Flier E (2003) Melanin-concentrating hormone is a critical mediator of the leptin-deficient phenotype. Proc Natl Acad Sci USA 100: 10085–10090Google Scholar
  40. 40.
    Chen Y, Hu C, Hsu CK, Zhang Q, Bi C, Asnicar M, Hsiung HM, Fox N, Slieker LJ, Yang DD et al. (2002) Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity. Endocrinology 143: 2469–2477PubMedGoogle Scholar
  41. 41.
    Marsh DJ, Weingarth DT, Nove DE, Chen HY, Trumbauer ME, Chen As, Guan XM, Jiang MM, Feng Y, Camacho RE et al. (2002) Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA 99: 3240–3245PubMedGoogle Scholar
  42. 42.
    Takekawa S, Asami A, Ishihara Y, Terauchi J, Kato K, Shimomura Y, Mori M, Murakoshi H, Kato K, Suzuki N et al. (2002) T-226296: a novel, orally active and selective melanin-concentrating hormone receptor antagonist. Eur J Pharmacol 438: 129–135PubMedGoogle Scholar
  43. 43.
    Borowsky B, Durkin MM, Ogozalek K, Marzabadi MR, DeLeon J, Lagu B, Heurich R, Lichtblau H, Shaposhnik Z, Daniewska I et al. (2002) Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med 8: 825–830PubMedGoogle Scholar
  44. 44.
    Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385: 119–120Google Scholar
  45. 45.
    Abbott CR, Rossi M, Kim M, AI Ahmed SH, Taylor GM, Ghatei MA, Smith DM, Bloom SR (2000) Investigation of the melanocyte stimulating hormones on food intake. Lack of evidence to support a role for the melanocortin-3-receptor. Brain Res 869: 203–210PubMedGoogle Scholar
  46. 46.
    Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD et al. (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88: 131–141PubMedGoogle Scholar
  47. 47.
    Schioth HB, Mucenience R, Mutulis F, Bouifrouri AA, Mutule I, Wikberg JES (1999) Further pharmacological characterisation of the selective melanocortin 4 receptor antagonist HSO14: Comparison with SHU9119. Neuropeptides 33: 191–196PubMedGoogle Scholar
  48. 48.
    Benoit SC, Schwartz MW, Lachey JL, Hagan MM, Rushing PA, Blake KA, Yagaloff KA, Kurylko G, Franco L, Danhoo W et al. (2000) A novel selective melanocortin-4 receptor agonist reduces food intake in rats and mice without producing aversion consequences. J Neurosci 20: 3442–3448PubMedGoogle Scholar
  49. 49.
    Cheung CC, Clifton Dk, Steiner RA (1997) Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocinol 138: 4489–4492Google Scholar
  50. 50.
    Ebihara K, Ogawa Y, Katsuura G, Numata Y, Masuzaki H, Satoh N, Tamaki M, Yoshioka T, Hayase M, Matsuoka N et al. (1999) Involvement of agouti-related protein, an endogenous antagonist at the hypothalamic melanocortin receptor; in leptin action. Diabetes 48: 2028–2033PubMedGoogle Scholar
  51. 51.
    Krude H, Biebermann H, Luck W, Horn R, Brabant G, Graters A (1998) Severe early-onset obesity, adrenal insufficiency and read hair pigmentation caused by POMC mutations in humans. Nat Genet 19: 155–157PubMedGoogle Scholar
  52. 52.
    Yeo GSH, Farooqi S, Aminian S, Halsall DJ, Stanhope RG, O’Rahilly S (1998) A frameshift mutation in MC4-R associated with dominantly inherited human obesity. Nat Genet 20: 111–112PubMedGoogle Scholar
  53. 53.
    Krude H, Bieberman H, Schnabel D, Tansek MZ, Theunissen P, Mullis PE, Graters A (2003) Obesity due to proopiomealnocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab 88: 4633–4640PubMedGoogle Scholar
  54. 54.
    Koikov LN, Ebetino FH, Solinsky MG, Cross-Doersen D, Knittel JJ (2003) Sub-nanomolar hMClR agonists by end-capping of the melanocortin tetrapeptide His-D-Phe-Arg-Trp-NH(2). Bioorg Med Chem Lett 13: 2647–2650PubMedGoogle Scholar
  55. 55.
    Kulesza A, Ebetino FH, Mishra RK, Cross-Doersen D, Mazur AW (2003) Synthesis of 2,4,5-trisubstituted tetrahydropyrans as peptidomimetic scaffolds for melanocortin receptor ligands. Org Lett 5: 1163–1166PubMedGoogle Scholar
  56. 56.
    Xi N, Hale C, Kelly MG, Norman MH, Stec M, Xu S, Baumgartner JW, Fotsch C (2004) Synthesis of novel melanocortin 4 receptor agonists and antagonists containing a succinamide core. Bioor Med Chem Lett 14: 377–381Google Scholar
  57. 57.
    Richardson TI, Ornstein PL, Briner K, Fisher MJ, Backer RT, Biggers CK, Clay MP, Emmerson PJ, Hertel LW, Hsiung HM et al. (2004) Synthesis and structure-activity relationships of novel arylpiperazines as potent and selective agonists of the melanocortin subtype 4 receptor. J Med Chem 47: 744–755PubMedGoogle Scholar
  58. 58.
    Kuhar MJ, Dall Vechia SE (1999) CART peptides: novel addiction-and feeding-related neuropeptides. Trends Neurosci 22: 316–320PubMedGoogle Scholar
  59. 59.
    Douglass J, Daoud S (1996) Characterization of the human cDNA and genomic DNA encoding CART: a cocaine-and amphetamine-regulated transcript. Gene 169: 241–245PubMedGoogle Scholar
  60. 60.
    Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N et al. (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393: 72–76PubMedGoogle Scholar
  61. 61.
    Thim L, Kristensen P, Larsen PJ, Wulff BS (1998) CART, a new anorectic peptide. Int J Biochem Cell Biol 30: 1281–1284PubMedGoogle Scholar
  62. 62.
    Thim L, Nielsen PF, Judge ME, Andersen AS, Diers I, Egel-Mitani M, Hastrup S (1998) Purification and characterisation of a new hypothalamic satiety peptide, cocaine and amphetamine regulated transcript (CART), produced in yeast. FEBS Lett 428: 263–268PubMedGoogle Scholar
  63. 63.
    Asnicar MA, Smith DP, Yang DD, Heiman ML, Fox N, Chen YF, Hsiung HM, Koster A (2001) Absence of cocaine-and amphetamine-regulated transcript results in obesity in mice fed a high caloric diet. Endocrinol 142: 4394–4400Google Scholar
  64. 64.
    Abbott CR, Rossi M, Wren AM, Murphy KG, Kennedy AR, Stanley SA, Zollner AN, Morgan DG, Morgan I, Ghatei MA et al. (2001) Evidence of an orexigenic role for cocaine-and amphetamineregulated transcript after administration into discrete hypothalamic nuclei. Endocrinology 142: 3457–3463PubMedGoogle Scholar
  65. 65.
    Breivogel CS, Childers SR (1998) The functional neuroanatomy of brain cannabinoid receptors. Neurobiological Disorders 5: 417–431Google Scholar
  66. 66.
    Glass M, Dragunow M, Faull RLM (1997) Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77: 299–318PubMedGoogle Scholar
  67. 67.
    Harrold JA, Elliott JC, King PJ, Widdowson PS, Williams G (2002) Down-regulation of cannabinoid-1 (CB-1) receptors in specific extrahypothalamic regions of rats with dietary obesity: a role for endogenous cannabinoids in driving appetite for palatable food? Brain Res 952: 232–238PubMedGoogle Scholar
  68. 68.
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258: 1946–1949PubMedGoogle Scholar
  69. 69.
    Di Marzo V, Melck D, Bisogno T, De Petrocellis L (1998) Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends in Neuroscience 21: 521–528Google Scholar
  70. 70.
    Stella N, Schweitzer P, Piomelli D (1997) A second endogenous cannabinoid that modulates longterm potentiation. Nature 388: 773–778PubMedGoogle Scholar
  71. 71.
    Hanus L, Abu-Lafi S, Fride E, Breuer A, Vogel Z, Shaley DE, Kustanovich I, Mechoulam R (2001) 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci USA 98: 3662–3665PubMedGoogle Scholar
  72. 72.
    Porter AC, Sauer JM, Knierman MD, Becker GW, Berna MJ, Bao J, Nomikos GG, Carter P, Bymaster FP, Leese AB et al. (2002) Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther 301: 1020–1024PubMedGoogle Scholar
  73. 73.
    Ravinet Trillou C, Delgorge C, Menet C, Arnone M, Soubrie P (2004) CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord 28: 640–648PubMedGoogle Scholar
  74. 74.
    Williams CM, Rogers PJ, Kirkham TC (1998) Hyperphagia in pre-fed rats following oral delta 9-THC. Physiol Behav 15: 343–346Google Scholar
  75. 75.
    Williams CM, Kirkham TC (1999) Anandamide induces over-eating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology 143: 315–317PubMedGoogle Scholar
  76. 76.
    Hao S, Ayraham Y, Mechoulam R, Berry EM (2000) Low dose anandamide affects food intake, cognitive function, neurotransmitter and corticosterone levels in diet-restricted mice. Eur J Pharmacol 392: 147–156PubMedGoogle Scholar
  77. 77.
    Corp ES, Melville LD, Greenberg D, Gibbs J, Smith GP (1990) Effect of fourth ventricular neuropeptide Y and peptide YY on ingestive and other behaviors. Am J Physiol 259: R317–R323PubMedGoogle Scholar
  78. 78.
    Erickson JC, Clegg KE, Palmiter RD (1996) Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381: 415–421PubMedGoogle Scholar
  79. 79.
    Colombo G, Agabio R, Diaz G, Lobina C, Reali R, Gessa GL (1998) Appetite suppression and weight loss after the cannabinoid antagonist SR 141716. Life Sci 63: 113–117Google Scholar
  80. 80.
    Rowland NE, Mukherjee M, Robertson K (2001) Effects of the cannabinoid receptor antagonist SR 141716, alone and in combination with dexfenfluramine or naloxone, on food intake in rats. Psychopharmacology 159: 111–116PubMedGoogle Scholar
  81. 81.
    Kirkham TC, Williams CM, Fezza D, Di Marzo V (2002) Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 136: 550–557PubMedGoogle Scholar
  82. 82.
    Di Marzo V, Goparaju SK, Wang L, Batkai S, Jarai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T, Kunos G (2001) Leptin-regulated endocannainoids are involved in maintaining food intake. Nature 410: 822–825PubMedGoogle Scholar
  83. 83.
    Wenger T, Jamali KA, Juaneda C, Leonardelli J, Tramu G (1997) Arachidonylethanolamide (anandamide) activates the parvocellular part of the hypothalamic paraventricular nucleus. Biochem Biophys Res Commun 237: 724–728PubMedGoogle Scholar
  84. 84.
    Patel NA, Moldow RL, Patel JA, Wu G, Chang SL (1998) Arachidonylethanolamide (AEA) activation of FOS proto-oncogene protein immunoreactivity in the rat brain. Brain Res 797: 225–233PubMedGoogle Scholar
  85. 85.
    Jamshidi N, Taylor DA (2001) Anandamide administration into the ventromedial hypothalamus stimulates appetitein rats. Br J Pharmacol 134: 1151–1154PubMedGoogle Scholar
  86. 86.
    Cota D, Marsicano G, Tschop M, Grubler Y, Hachskamm C, Schubert M, Auer D, Yassouridis A, Thone-Reineke C, Ortmann S et al. (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112: 423–431PubMedGoogle Scholar
  87. 87.
    Verty AN, McFarlane JR, McGregor IS, Mallett PE (2004) Evidence for an interaction between CB1 cannabinoid and melanocortin MC4-R receptors in regulating food intake. Endocrinology 45: 3224–3231Google Scholar
  88. 88.
    Finkelstein DI, Reeves AK, Hörne MK (1996) An electron microscopic tracer study of projections from the entopeduncular nucleus to the ventrolateral nucleus of the rat. Neurosci Lett 211: 33–36PubMedGoogle Scholar
  89. 89.
    Gorbachevskaia AL (1999) Projections from the substantia nigra, ventral tegmental area and amygdale to the palladium in dog brain. Morfologiia 115: 11–14PubMedGoogle Scholar
  90. 90.
    Pecina S, Berridge KC (2000) Opioid sites in nucleus accumbens shell mediate eating and hedonic ‘liking’ for food: map based on microinjection fos plumes. Brain Res 863: 71–86PubMedGoogle Scholar
  91. 91.
    Arnone M, Maruani J, Chaperon F, Thiebot MH, Poncelet M, Soubrie P, LeFur G (1997) Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology 132: 104–106PubMedGoogle Scholar
  92. 92.
    Simiand J, Keane M, Keane PE, Soubrie P (1998) SR 141716, a CB1 cannabinoid receptor antagonist, selectively reduces sweet food intake in marmosets. Behav Pharmacol 9: 179–181PubMedGoogle Scholar
  93. 93.
    Welch SP, Eads M (1999) Synergistic interactions of endogenous opioids and cannabinoid systems Brain Res 848: 183–190PubMedGoogle Scholar
  94. 94.
    Kirkham TC, Williams CM (2001) Synergistic effects of opioid and cannabinoid antagonists on food intake. Psychopharmacology 153: 267–270PubMedGoogle Scholar
  95. 95.
    Iverson LL (2000) The science of marijuana. Oxford University Press, OxfordGoogle Scholar
  96. 96.
    Vickers SP, Kennett GA (2005) Cannabinoids and the regulation of ingestive behaviour. Curr Drug Targets 6: 215–223PubMedGoogle Scholar
  97. 97.
    Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S; RIO-Europe Study Group (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365: 1389–1397PubMedGoogle Scholar
  98. 98.
    Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J; RIO-North America Study Group (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295: 761–775PubMedGoogle Scholar
  99. 99.
    Despres JP, Golay A, Sjostrom L; Rimonabant in Obesity-Lipids Study Group (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353: 2121–2134PubMedGoogle Scholar
  100. 100.
    Scheen AJ, Finer N, Hollander P, Jensen MD, Van Gaal LF; RIO-Diabetes Study Group (2006) Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 368: 1660–1672PubMedGoogle Scholar
  101. 101.
    Leibowitz SF, Shor-Posner G (1986) Brain serotonin and eating behavior. Appetite 7: 1–14PubMedGoogle Scholar
  102. 102.
    Finn PD, Cunningham MJ, Rickard DG, Clifton DK, Steiner RA (2001) Serotonergic neurons are targets for leptin in the monkey. J Clin Endocrinol Metab 86: 422–426PubMedGoogle Scholar
  103. 103.
    Tecott LH, Abdallah L (2003) Mouse genetic approaches to feeding regulation: serotonin 5-HT2C receptor mutant mice. CNS Spectr 8: 584–588PubMedGoogle Scholar
  104. 104.
    Woolley ML, Marsden CA, Fone KC (2004) 5-HT6 receptors. Curr Drug Targets CNS Neurol Disord 3: 59–79PubMedGoogle Scholar
  105. 105.
    Vickers SP, Dourish CT (2004) Serotonin receptor ligands and the treatment of obesity. Curr Opin Investig Drugs 5: 377–388PubMedGoogle Scholar
  106. 106.
    Shacham S, Marantz Y, Senderowitz H (2005) Novel 5-HT6 receptor antagonists for the treatment of obesity. Obes Res 13: A192Google Scholar
  107. 107.
    Niijima A (1981) Visceral afferents and metabolic function. Diabetologia 20: 325–330PubMedGoogle Scholar
  108. 108.
    Moinat M, Deng C, Muzzin P, Assimacopoulos-Jeannet F, Seydoux J, Dulloo AG, Giacobino JP (1995) Modulation of obesegene-expression in rat brown and white adipose tissues. FEBS Lett 373: 131–134PubMedGoogle Scholar
  109. 109.
    Bi S, Gavrilova O, Gong DW, Mason MM, Reitman M (1997) Identification of a placental enhancer for the human leptin gene. J Biol Chem 272: 30583–30588PubMedGoogle Scholar
  110. 110.
    Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN, Moizo L, Lehy T, Guerre-Millo M, Le Marchand-Brustel Y et al. (1998) The stomach is a source of leptin. Nature 394: 790–793PubMedGoogle Scholar
  111. 111.
    Isse N, Ogawa Y, Tamura N, Masuzaki H, Mori K, Okazaki T, Satoh N, Shigemoto M, Yoshimasa Y, Nishi S et al. (1995) Structural organization and chromosomal assignment of the human obese gene. J Biol Chem 270: 27728–27733PubMedGoogle Scholar
  112. 112.
    Cinti S, Frederich RC, Zingaretti MC, De Matteis R, Flier JS, Lowell BB (1997) Immunohistochemical localization of leptin and uncoupling protein in white and brown adipose tissue. Endocrinology 138: 797–804PubMedGoogle Scholar
  113. 113.
    Masuzaki H, Ogawa Y, Hosoda K, Kawada T, Fushiki T, Nakao K (1995) Augmented expression of the obese gene in the adipose-tissue from rats fed high-fat diet. Biochem Biophys Res Commun 216: 355–358PubMedGoogle Scholar
  114. 114.
    Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, Leibel RL (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271: 994–996PubMedGoogle Scholar
  115. 115.
    Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P (1995) Recombinant mouse ob protein-evidence for a peripheral signal linking adiposity and central neural networks. Science 269: 546–549PubMedGoogle Scholar
  116. 116.
    Romsos DR, Swick AG, Chrunyk BA, Cunningham D, Mistry AM(1996) Intracerebroventricular recombinant leptin decreases food-intake and increases metabolic-rate in ob/ob mice. Faseb J 10: 1287Google Scholar
  117. 117.
    Wang Q, Bing C, Al-Barazanji K, Mossakowaska DE, Wang XM, McBay DL, Neville WA, Taddayon M, Pickavance L, Dryden S et al. (1997) Interactions between leptin and hypothalamic neuropeptide Y neurons in the control of food intake and energy homeostasis in the rat. Diabetes 46: 335–341PubMedGoogle Scholar
  118. 118.
    Bjorbaek C, Uotani S, da Silva B, Flier JS (1997) Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 272: 32686–32695PubMedGoogle Scholar
  119. 119.
    Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM (1996) Leptin enters the brain by a saturable system independent of insulin. Peptides 17: 305–311PubMedGoogle Scholar
  120. 120.
    Mercer JG, Moar KM, Rayner VD, Trayhurn P, Hoggard N (1997) Regulation of leptin receptor and NPY gene expression in hypothalamus of leptin-treated obese (ob/ob) and cold-exposed lean mice. FEBS Lett 402: 185–188PubMedGoogle Scholar
  121. 121.
    Baskin D, Breininger J, Schwartz M (1999) Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes 48: 828–833PubMedGoogle Scholar
  122. 122.
    Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, Lynn RB, Zhang PL, Sinha MK, Considine RV (1996) Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 348: 159–161PubMedGoogle Scholar
  123. 123.
    Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B, Hunt P et al. (1999) Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282: 1568–1575PubMedGoogle Scholar
  124. 124.
    Eckel LA, Langhans W, Kahler A, Campfield LA, Smith FJ, Geary N (1998) Chronic administration of OB protein decreases food intake by selectively reducing meal size in female rats. Am J Physiol 275: R186–R193PubMedGoogle Scholar
  125. 125.
    Kahler A, Geary N, Eckel LA, Campfield LA, Smith FJ, Langhans W (1998) Chronic administration of OB protein decreases food intake by selectively reducing meal size in male rats. Am J Physiol 275: R180–R185PubMedGoogle Scholar
  126. 126.
    Hukshorn CJ, Saris WH, Westerterp-Plantenga MS, Farid AR, Smith FJ, Campfield LA (2000) Weekly subcutaneous pegylated recombinant native human leptin (PEG-OB) administration in obese men. J Clin Endocrinol Metab 85: 4003–4009PubMedGoogle Scholar
  127. 127.
    Stahl N, Farruggella TJ, Boulton TG, Zhong Z, Darnell JE Jr, Yancopoulos GD (1995) Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267: 1349–1353PubMedGoogle Scholar
  128. 128.
    Xu B, Kalra PS, Moldawer LL, Kalra SP (1998) Increased appetite augments hypothalamic NPY Y1 receptor gene expression: effects of anorexigenic ciliary neurotropic factor. Regul Pept 75–76: 391–395PubMedGoogle Scholar
  129. 129.
    Gloaguen I, Costa P, Demartis A, Lazzaro D, DiMarco A, Graziani R, Paonessa G, Chen F, Rosenblum CI, Van der Ploeg LH et al. (1997) Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc NatlAcad Sci USA 94: 6456–6461Google Scholar
  130. 130.
    Lambert PD, Anderson KD, Sleeman MW, Wong V, Tan J, Hijarunguru A, Corcoran TL, Murray JD, Thabet KE, Yancopoulos GD et al. (2001) Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc Natl Acad Sci USA 98: 4652–4657PubMedGoogle Scholar
  131. 131.
    Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL, Burn P, Palmiter RD (1999) Response of melanocortin-4 deficient mice to anorectic and orexigenic peptides. Nat Genet 21: 119–122PubMedGoogle Scholar
  132. 132.
    Kalra SP (2001) Circumventing leptin resistance for weight control. Proc Natl Acad Sci USA 98: 4279–4281PubMedGoogle Scholar
  133. 133.
    Ettinger MP, Littlejohn TW, Schwartz SL, Weiss SR, McIlwain HH, Heymsfield SB, Bray GA, Roberts WG, Heyman ER, Stambler N et al. (2003) Recombinant variant of ciliary neurotrophic factor for weight loss in obese adults: a randomized, dose-ranging study. JAMA 289: 1826–1832PubMedGoogle Scholar
  134. 134.
    Grasso P, Leinung MC, Ingher SP, Lee DW (1997) In vivo effects of leptin-related synthetic peptides on body weight and food intake in female ob/ob mice: localization of leptin activity to domains between amino acid residues 106–140. Endocrinology 138: 1413–1418PubMedGoogle Scholar
  135. 135.
    Grasso P, Leinung MC, Lee DW (1999) Epitope mapping of secreted mouse leptin utilizing peripherally administered synthetic peptides. Regul Pept 85: 93–100PubMedGoogle Scholar
  136. 136.
    Lee DW, Leinung MC, Rozhavskaya-Arena M, Grasso P (2002) Leptin and the treatment of obesity: its current status. Eur J Pharmacol 440: 129–139PubMedGoogle Scholar
  137. 137.
    Grasso P, White DW, Tartaglia LA, Leinung MC, Lee DW (1999) Inhibitory effects of leptinrelated synthetic peptide 116–130 on food intake and body weight gain in female C57BL/6J ob/ob mice may not be mediated by peptide activation of the long isoform of the leptin receptor. Diabetes 48: 2204–2209PubMedGoogle Scholar
  138. 138.
    Durrance A (2003) Obesity and related disorders — SMi Conference. Fat is no longer a feminist issue. IDrugs 6: 222–223PubMedGoogle Scholar
  139. 139.
    Brief DJ, Davis JD (1984) Reduction of food intake and body weight by chronic intraventricular insulin infusion. Brain Res Bull 12: 571–575PubMedGoogle Scholar
  140. 140.
    Menendez JA, Atrens DM (1991) Insulin and the paraventricular hypothalamus: modulation of energy balance. Brain Res 555: 193–201PubMedGoogle Scholar
  141. 141.
    Strubbe JH, Mein CG (1977) Increased feeding in response to bilateral injection of insulin antibodies in the VMH. Physiol Behav 19: 309–313PubMedGoogle Scholar
  142. 142.
    Schwartz MW, Marks JL, Sipols AJ, Woods SC, Kahn SE, Porte D Jr, (1991) Central insulin administration reduces neuropeptide Y mRNA expression in the arcuate nucleus of food-deprived lean (Fa/Fa) but not obese (fa/fa) Zucker rats. Endocrinology 128: 2645–2647PubMedGoogle Scholar
  143. 143.
    Sipols AJ, Baskin DG, Schwartz MW (1995) Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 44: 147–151PubMedGoogle Scholar
  144. 144.
    Schwartz MW, Sipols AJ, Marks JL, Sanacora G, White JD, Scheurink A, Kahn SE, Baskin DG, Woods SC, Figlewicz DP et al. (1992) Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology 130: 3608–3616PubMedGoogle Scholar
  145. 145.
    Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289: 2122–2125PubMedGoogle Scholar
  146. 146.
    Air EL, Strowski MZ, Benoit SC, Conarello SL, Salituro GM, Guan XM, Liu K, Woods SC, Zhang BB (2002) Small molecule insulin mimetics reduce food intake and body weight and prevent development of obesity. Nat Med 8: 303Google Scholar
  147. 147.
    Moran TH, Schwartz GJ (1994) Neurobiology of cholecystokinin. Crit Rev Neurobiol 9: 1–28PubMedGoogle Scholar
  148. 148.
    West DB, Fey D, Woods SC (1984) Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 246: R776–R787PubMedGoogle Scholar
  149. 149.
    Matson CA, Ritter RC (1999) Long-term CCK-leptin synergy suggests a role for CCK in the regulation of body weight. Am J Physiol 276: R1038–R1045PubMedGoogle Scholar
  150. 150.
    Figlewicz DP, Stein LJ, West D, Porte D Jr, Woods SC (1986) Intracisternal insulin alters sensitivity to CCK-induced meal suppression in baboons. Am J Physiol 250: R856–R860PubMedGoogle Scholar
  151. 151.
    Konturek PC, Konturek SJ, Brzozowski T, Hahn EG (1999) Gastroprotection and control of food intake by leptin. Comparison with cholecystokinin and prostaglandins. J Physiol Pharmacol 50: 39–48PubMedGoogle Scholar
  152. 152.
    Brzozowski T, Konturek PC, Konturek SJ, Pajdo R, Duda A, Pierzchalski P, Bielanski W, Hahn EG (1999) Leptin in gastroprotection induced by cholecystokinin or by a meal. Role of vagal and sensory nerves and nitric oxide. Eur J Pharmacol 374: 263–276PubMedGoogle Scholar
  153. 153.
    Fan W, Ellacott KL, Halatchev IG, Takahashi K, Yu P, Cone RD (2004) Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci 7: 335–336PubMedGoogle Scholar
  154. 154.
    Dourish CT, Rycroft W, Iversen SD (1989) Postponement of satiety by blockade of brain cholecystokinin (CCK-B) receptors. Science 245: 1509–1511PubMedGoogle Scholar
  155. 155.
    Moran TH, Latz LF, Plata-Salaman CR, Schwartz GJ (1998) Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Physiol 274: R618–R625PubMedGoogle Scholar
  156. 156.
    Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407: 908–913PubMedGoogle Scholar
  157. 157.
    Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) Arole for ghrelin in the central regulation of feeding. Nature 409: 194–198PubMedGoogle Scholar
  158. 158.
    Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, Batterham RL, Taheri S, Stanley SA, Ghatei MA et al. (2001) Ghrelin causes hyperphagia and obesity in rats. Diabetes 50: 2540–2547PubMedGoogle Scholar
  159. 159.
    Shintani M, Ogawa Y, Ebihara K, Aizawa-Abe M, Miyanaga F, Takaya K, Hayashi T, Inoue G, Hosoda K, Kojima M et al. (2001) Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Yl receptor pathway. Diabetes 50: 227–232PubMedGoogle Scholar
  160. 160.
    Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR (2001) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86: 5992PubMedGoogle Scholar
  161. 161.
    Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50: 1714–1719PubMedGoogle Scholar
  162. 162.
    Ariyasu H, Takaya K, Tagami T, Ogawa Y, Hosoda K, Akamizu T, Suda M, Koh T, Natsui K, Toyooka S et al. (2001) Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab 86: 4753–4758PubMedGoogle Scholar
  163. 163.
    Pinkney J, Williams G (2002) Ghrelin gets hungry. Lancet 359: 1360–1361PubMedGoogle Scholar
  164. 164.
    Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407: 908–913PubMedGoogle Scholar
  165. 165.
    English PJ, Ghatei MA, Malik IA, Bloom SR, Wilding JP (2002) Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab 87: 2984PubMedGoogle Scholar
  166. 166.
    DelParigi A, Tschop M, Heiman ML, Salbe AD, Vozarova B, Sell SM, Bunt JC, Tataranni PA (2002) High circulating ghrelin: a potential cause for hyperphagia and obesity in prader-willi syndrome. J Clin Endocrinol Metab 87: 5461–5464PubMedGoogle Scholar
  167. 167.
    Asakawa A, Inui A, Kaga T, Katsuura G, Fujimiya M, Fujino MA, Kasuga M (2003) Antagonism of ghrelin receptor reduces food intake and body weight gain in mice. Gut 52: 947–952PubMedGoogle Scholar
  168. 168.
    Sesmilo G, Biller BM, Llevadot J, Hayden D, Hanson G, Rifai N, Klibanski A (2000) Effects of growth hormone administration on inflammatory and other cardiovascular risk markers in men with growth hormone deficiency. A randomized, controlled clinical trial. Ann Intern Med 133: 111–122PubMedGoogle Scholar
  169. 169.
    Helmling S, Maasch C, Eulberg D, Buchner K, Schroder W, Lange C, Vonhoff S, Wlotzka B, Tschop MH, Rosewicz S et al. (2004) Inhibition of ghrelin action in vitro and in vivo by an RNA-Spiegelmer. Proc Natl Acad Sci USA 101: 13174–13179PubMedGoogle Scholar
  170. 170.
    Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J et al. (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273: 974–977PubMedGoogle Scholar
  171. 171.
    Smith RG, Pong SS, Hickey G, Jacks T, Cheng K, Leonard R, Cohen CJ, Arena JP, Chang CH, Drisko J et al. (1996) Modulation of pulsatile GH release through a novel receptor in hypothalamus and pituitary gland. Recent Prog Harm Res 51: 261–285Google Scholar
  172. 172.
    Pedersen-Bjergaard U, Host U, Kelbaek H, Schifter S, Rehfeld JF, Faber J, Christensen NJ (1996) Influence of meal composition on postprandial peripheral plasma concentrations of vasoactive peptides in man. Scand J Clin Lab Invest 56: 497–503PubMedGoogle Scholar
  173. 173.
    Halatchev IG, Ellacott KL, Fan W, Cone RD (2004) Peptide YY3-36 inhibits food intake in mice through a melanocortin-4 receptor-independent mechanism. Endocrinology 145: 2585–2590PubMedGoogle Scholar
  174. 174.
    Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA et al. (2002) Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418: 650–654PubMedGoogle Scholar
  175. 175.
    Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, Ghatei MA, Bloom SR (2003) Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 349: 941–948PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Joanne A. Harrold
    • 1
  • John P. H. Wilding
    • 2
  1. 1.School of PsychologyUniversity of LiverpoolLiverpoolUK
  2. 2.School of Clinical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations