Open Problems

  • U. S. R. Murty
Part of the Trends in Mathematics book series (TM)


Bipartite Graph Chordal Graph Perfect Graph Outerplanar Graph Geodesic Convexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Alspach, Research problems, Problem 3, Discrete Mathematics 36 (1981), 333.CrossRefMathSciNetGoogle Scholar
  2. [2]
    M. Augier and S. Eliahou, Parity-regular Steinhaus graphs, in preparation.Google Scholar
  3. [3]
    J. Cáceres, A. Márquez, O.R. Oellerman, M.L. Puertas, Rebuilding convex sets in graphs, Discrete Math. 297(1–3) (2005), 26–37.CrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas and C. Seara. Geodeticity of the contour of chordal graphs, Submitted to Disc. Appl. Math. Google Scholar
  5. [5]
    K. Cameron, E.E. Eschen, C.T. Hoang and R. Sritharan, The list partition problem for graphs, Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2004), 391–399.Google Scholar
  6. [6]
    W. Dymacek, Steinhaus graphs, Proc. 10th southeast. Conf. Combinatorics, Graph Theory and Computing, Boca Raton 1979, Vol. I, Congr. Numerantium 23 (1979) 399–412.MathSciNetGoogle Scholar
  7. [7]
    S. Even, A. Itai and A. Shamir, On the complexity of timetable and multicommodity flow problems, SIAM J. Comp. 5 (1976) 691–703.CrossRefMathSciNetGoogle Scholar
  8. [8]
    T. Feder, P. Hell, D. Kral and J. Sgall, Two algorithms for list matrix partitions, Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), (2005), 870–876.Google Scholar
  9. [9]
    N. Garg, V.V. Vazirani and M. Yannakakis, Primal-dual approximation algorithms for integral flow and multicut in trees, Algorithmica 18 (1997) 3–20.CrossRefMathSciNetGoogle Scholar
  10. [10]
    M. Haviv and E. Korach, On graph partitioning and determining near uncoupling in Markov chains, in preparation.Google Scholar
  11. [11]
    E. Korach and M. Penn, A fast algorithm for maximum integral two-commodity flow in planar graphs, Discrete Applied Mathematics 47 (1993) 77–83.CrossRefMathSciNetGoogle Scholar
  12. [12]
    J.L. Ramírez Alfonsín, Topics in Combinatorics and Computational Complexity, D.Phil. Thesis, University of Oxford, U.K., (1993).Google Scholar
  13. [13]
    N. Robertson and P.D. Seymour, Graphs minors XIII: The disjoint paths problem, J. Comb. Theory, Ser. B, 63 (1995) 65–110.CrossRefMathSciNetGoogle Scholar
  14. [14]
    G. Sierksma, Relationships between Carathéodory, Helly, Radon and exchange numbers of convexity spaces, Nieuw Archief voor Wisk., 25(2) (1977) 115–132.MathSciNetGoogle Scholar
  15. [15]
    M. Van de Vel, Theory of convex structures, North-Holland, Amsterdam, MA (1993).MATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • U. S. R. Murty
    • 1
  1. 1.University of WaterlooCanada

Personalised recommendations