Skip to main content

Kempe Equivalence of Colorings

  • Chapter
Graph Theory in Paris

Part of the book series: Trends in Mathematics ((TM))

Abstract

Several basic theorems about the chromatic number of graphs can be extended to results in which, in addition to the existence of a κ-coloring, it is also shown that all κ-colorings of the graph in question are Kempe equivalent. Here, it is also proved that for a planar graph with chromatic number less than κ, all κ-colorings are Kempe equivalent.

Supported in part by the Ministry for Higher Education, Science and Technology of Slovenia, Research Program P1-0297.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Baumann, über das Erzeugen minimaler Kantenfärbungen von Graphen, in Graphentheorie und ihre Anwendungen, Päd. Hochsch. Dresden, Dresden, 1988, pp. 5–8.

    Google Scholar 

  2. C. Berge, A new color change to improve the coloring of a graph, Discrete Appl. Math. 24 (1989) 25–28.

    Article  MathSciNet  Google Scholar 

  3. M. Dyer, A. Flaxman, A. Frieze, and E. Vigoda, Randomly coloring sparse random graphs with fewer colors than the maximum degree, to appear in Random Structures and Algorithms.

    Google Scholar 

  4. A. Ehrenfeucht, V. Faber, H.A. Kierstead, A new method of proving theorems on chromatic index, Discrete Math. 52 (1984) 159–164.

    Article  MathSciNet  Google Scholar 

  5. S. Fisk, Geometric coloring theory, Adv. Math. 24 (1977) 298–340.

    MathSciNet  Google Scholar 

  6. T.P. Hayes, E. Vigoda, A non-Markovian coupling for randomly sampling colorings, in Proc. 44th Ann. IEEE Symp. on Found. of Comp. Sci., 2003, pp. 618–627.

    Google Scholar 

  7. M. Las Vergnas, H. Meyniel, Kempe classes and the Hadwiger conjecture, J. Combin. Theory Ser. B 31 (1981) 95–104.

    Article  MathSciNet  Google Scholar 

  8. T. Łuczak, E. Vigoda, Torpid mixing of the Wang-Swendsen-Kotecký algorithm for sampling colorings, J. Discrete Algorithms 3 (2005) 92–100.

    Article  MathSciNet  Google Scholar 

  9. H. Meyniel, Les 5-colorations d’un graphe planaire forment une classe de commutation unique, J. Combin. Theory Ser. B 24 (1978) 251–257.

    Article  MathSciNet  Google Scholar 

  10. H. Meyniel, The graphs whose odd cycles have at least two chords, in Topics on perfect graphs, Eds. C. Berge and V. Chvátal, Ann. Discrete Math. 21 (1984) 115–119.

    Google Scholar 

  11. B. Mohar, Akempic triangulations with 4 odd vertices, Discrete Math. 54 (1985) 23–29.

    Article  MathSciNet  Google Scholar 

  12. C.A. Morgenstern, H.D. Shapiro, Heuristics for rapidly four-coloring large planar graphs, Algorithmica 6 (1991) 869–891.

    Article  MathSciNet  Google Scholar 

  13. T. Sibley, S. Wagon, Rhombic Penrose tilings can be 3-colored, Amer. Math. Monthly 107 (2000) 251–253.

    Article  MathSciNet  Google Scholar 

  14. A.D. Sokal, A personal list of unsolved problems concerning lattice gasses and anti-ferromagnetic Potts models, Markov Processes and Related Fields 7 (2001) 21–38.

    MathSciNet  Google Scholar 

  15. W.T. Tutte, Invited address at the Workshop in Combinatorics and Discrete Structures — In honour of Prof. W.T. Tutte, UNICAMP, Campinas, Brazil, August 2–4, 1999.

    Google Scholar 

  16. E. Vigoda, Improved bounds for sampling colorings, J. Math. Phys. 41 (2000) 1555–1569.

    Article  MathSciNet  Google Scholar 

  17. J.-S. Wang, R.H. Swendsen, and R. Kotecký, Antiferromagnetic Potts models, Phys. Rev. Lett. 63 (1989) 109–112.

    Article  Google Scholar 

  18. J.-S. Wang, R.H. Swendsen, and R. Kotecký, Three-state antiferromagnetic Potts models: A Monte Carlo study, Phys. Rev. B 42 (1990) 2465–2474.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Mohar, B. (2006). Kempe Equivalence of Colorings. In: Bondy, A., Fonlupt, J., Fouquet, JL., Fournier, JC., Ramírez Alfonsín, J.L. (eds) Graph Theory in Paris. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7400-6_22

Download citation

Publish with us

Policies and ethics