Skip to main content

Independence Polynomials and the Unimodality Conjecture for Very Well-covered, Quasi-regularizable, and Perfect Graphs

  • Chapter

Part of the book series: Trends in Mathematics ((TM))

Abstract

If s κ denotes the number of stable sets of cardinality κ in the graph G, then \( I(G;x) = \sum\limits_{k = 0}^\alpha {s_k x^k } \) is the independence polynomial of G ([Gutman, Harary, 1983)], where α = α(G) is the size of a maximum stable set in G. [Alavi, Malde, Schwenk and Erdös (1987)] conjectured that I(T, x) is unimodal for every tree T, while, in general, they proved that for each permutation π of 1, 2, ..., α there is a graph G with α(G) = α such that s π(1) < s π(2) < ... < s π(α). [Brown, Dilcher and Nowakowski (2000)] conjectured that I(G; x) is unimodal for well-covered graphs. [Michael and Traves (2003)] provided examples of well-covered graphs with non-unimodal independence polynomials. They proposed the so-called “roller-coaster” conjecture: for a well-covered graph, the subsequence (s α/2⌉, s α/2⌉+1, ..., s α) is unconstrained in the sense of Alavi et al. The conjecture of Brown et al. is still open for very well-covered graphs, and it is worth mentioning that, apart from K 1 and the chordless cycle C 7, connected well-covered graphs of girth ≥ 6 are very well covered [(Finbow, Hartnell and Nowakowski, 1993)].

In this paper we prove that s ⌈(2α−1)/3⌉ ≥ ... ≥ s α−1s α are valid for (a) bipartite graphs; (b) quasi-regularizable graphs on 2α vertices.

In particular, we infer that these inequalities are true for (a) trees, thus doing a step in an attempt to prove the conjecture of Alavi et al.; (b) very well-covered graphs. Consequently, for the latter case, the unconstrained subsequence appearing in the roller-coaster conjecture can be shortened to (s α/2⌉, s α/2⌉+1, ..., s ⌈(2α−1/3⌍). We also show that the independence polynomial of a very well-covered graph G is unimodal for α ≤ 9, and is logconcave whenever α ≤ 5.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Alavi, P.J. Malde, A.J. Schwenk and P. Erdös, The vertex independence sequence of a graph is not constrained, Congressus Numerantium 58 (1987) 15–23.

    MathSciNet  Google Scholar 

  2. J. L. Arocha, Propriedades del polinomio independiente de un grafo, Revista Ciencias Matematicas, vol. V (1984) 103–110.

    MathSciNet  Google Scholar 

  3. C. Berge, Färbung von Graphen deren sämtliche bzw. deren ungerade Kreise starr sind (Zusammenfassung), Wiss. Z. Martin-Luther-Univ. Halle 10 (1961) 114–115.

    Google Scholar 

  4. C. Berge, Some common properties for regularizable graphs, edge-critical graphs and B-graphs, in: Graph Theory and Algorithms, Lecture Notes in Computer Science 108 (1980) 108–123, Springer-Verlag, Berlin.

    Google Scholar 

  5. C. Berge, Some common properties for regularizable graphs, edge-critical graphs and B-graphs, Annals of Discrete Mathematics 12 (1982) 31–44.

    MathSciNet  MATH  Google Scholar 

  6. J.I. Brown, K. Dilcher and R.J. Nowakowski, Roots of independence polynomials of well-covered graphs, Journal of Algebraic Combinatorics 11 (2000) 197–210.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.I. Brown, C.A. Hickman and R.J. Nowakowski, On the location of roots of independence polynomials, Journal of Algebraic Combinatorics 19 (2004) 273–282.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.I. Brown and R.J. Nowakowski, Bounding the roots of independence polynomials, Ars Combinatoria 58 (2001) 113–120.

    MathSciNet  MATH  Google Scholar 

  9. M. Chudnovsky, N. Robertson, P.D. Seymour and R. Thomas, Progress on perfect graphs, Mathematical Programming B 97 (2003) 405–422.

    MathSciNet  MATH  Google Scholar 

  10. M. Chudnovsky, N. Robertson, P.D. Seymour and R. Thomas, The Strong Perfect Graph Theorem, Annals of Mathematics (2004) (accepted).

    Google Scholar 

  11. M. Chudnovsky and P. Seymour, The roots of the stable set polynomial of a claw-free graph, (2004) (submitted), http://www.math.princeton.edu/~mchudnov/publications.html

    Google Scholar 

  12. R. Dutton, N. Chandrasekharan and R. Brigham, On the number of independent sets of nodes in a tree, Fibonacci Quarterly 31 (1993) 98–104.

    MathSciNet  MATH  Google Scholar 

  13. O. Favaron, Very well-covered graphs, Discrete Mathematics 42 (1982) 177–187.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Finbow, B. Hartnell and R.J. Nowakowski, A characterization of well-covered graphs of girth 5 or greater, Journal of Combinatorial Theory B 57 (1993) 44–68.

    Article  MathSciNet  MATH  Google Scholar 

  15. D.C. Fischer and A.E. Solow, Dependence polynomials, Discrete Mathematics 82 (1990) 251–258.

    Article  MathSciNet  Google Scholar 

  16. M. Goldwurm and M. Santini, Clique polynomials have a unique root of smallest modulus, Information Processing Letters 75 (2000) 127–132.

    Article  MathSciNet  Google Scholar 

  17. I. Gutman, Some analytical properties of independence and matching polynomials, Match 28 (1992) 139–150.

    MathSciNet  MATH  Google Scholar 

  18. I. Gutman, Some relations for the independence and matching polynomials and their chemical applications, Bul. Acad. Serbe Sci. Arts 105 (1992) 39–49.

    Google Scholar 

  19. I. Gutman and F. Harary, Generalizations of the matching polynomial, Utilitas Mathematica 24 (1983) 97–106.

    MathSciNet  MATH  Google Scholar 

  20. H. Hajiabolhassan and M.L. Mehrabadi, On clique polynomials, Australasian Journal of Combinatorics 18 (1998) 313–316.

    MathSciNet  MATH  Google Scholar 

  21. Y.O. Hamidoune, On the number of independent k-sets in a claw-free graph, Journal of Combinatorial Theory B 50 (1990) 241–244.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Hoede and X. Li, Clique polynomials and independent set polynomials of graphs, Discrete Mathematics 125 (1994) 219–228.

    Article  MathSciNet  MATH  Google Scholar 

  23. V.E. Levit and E. Mandrescu, Well-covered and König-Egervàry graphs, Congressus Numerantium 130 (1998) 209–218.

    MathSciNet  MATH  Google Scholar 

  24. V.E. Levit and E. Mandrescu, Well-covered trees, Congressus Numerantium 139 (1999) 101–112.

    MathSciNet  MATH  Google Scholar 

  25. V.E. Levit and E. Mandrescu, On well-covered trees with unimodal independence polynomials, Congressus Numerantium 159 (2002) 193–202.

    MathSciNet  MATH  Google Scholar 

  26. V.E. Levit and E. Mandrescu, On unimodality of independence polynomials of some well-covered trees, DMTCS 2003 (C. S. Calude et al. eds.), Lecture Notes in Computer Science, LNCS 2731, Springer-Verlag (2003) 237–256.

    Google Scholar 

  27. V.E. Levit and E. Mandrescu, A family of well-covered graphs with unimodal independence polynomials, Congressus Numerantium 165 (2003) 195–207.

    MathSciNet  MATH  Google Scholar 

  28. V.E. Levit and E. Mandrescu, On the roots of independence polynomials of almost all very well-covered graphs, Discrete Applied Mathematics (2005) (accepted).

    Google Scholar 

  29. V.E. Levit and E. Mandrescu, Graph products with log-concave independence polynomials, WSEAS Transactions on Mathematics Issue 3, vol. 3 (2004) 487–493.

    MathSciNet  Google Scholar 

  30. V.E. Levit and E. Mandrescu, Independence polynomials of well-covered graphs: generic counterexamples for the unimodality conjecture, European Journal of Combinatorics (2005) (accepted).

    Google Scholar 

  31. V.E. Levit and E. Mandrescu, Very well-covered graphs with log-concave independence polynomials, Carpathian Journal of Mathematics 20 (2004) 73–80.

    MathSciNet  MATH  Google Scholar 

  32. L. Lovász, A characterization of perfect graphs, Journal of Combinatorial Theory Series B 13 (1972) 95–98.

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Matchett, Operations on well-covered graphs and the roller-coaster conjecture, The Electronic Journal of Combinatorics 11 (2004) #R45

    Google Scholar 

  34. T.S. Michael and W.N. Traves, Independence sequences of well-covered graphs: nonunimodality and the roller-coaster conjecture, Graphs and Combinatorics 19 (2003) 403–411.

    Article  MathSciNet  MATH  Google Scholar 

  35. M.D. Plummer, Some covering concepts in graphs, Journal of Combinatorial Theory 8 (1970) 91–98.

    MathSciNet  MATH  Google Scholar 

  36. M.D. Plummer, Well-covered graphs: a survey, Quaestiones Mathematicae 16 (1993) 253–287.

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Ravindra, Well-covered graphs, J. Combin. Inform. System Sci. 2 (1977) 20–21.

    MathSciNet  MATH  Google Scholar 

  38. D. Stevanovic, Clique polynomials of threshold graphs, Univ. Beograd Publ. Elektrotehn. Fac., Ser. Mat. 8 (1997) 84–87.

    MathSciNet  MATH  Google Scholar 

  39. D. Stevanovic, Graphs with palindromic independence polynomial, Graph Theory Notes of New York XXXIV (1998) 31–36.

    MathSciNet  Google Scholar 

  40. A.A. Zykov, On some properties of linear complexes, Matematicheskij Sbornik 24 (1949) 163–188 (in Russian).

    MathSciNet  Google Scholar 

  41. A.A. Zykov, Fundamentals of graph theory, BCS Associates, Moscow, 1990.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Levit, V.E., Mandrescu, E. (2006). Independence Polynomials and the Unimodality Conjecture for Very Well-covered, Quasi-regularizable, and Perfect Graphs. In: Bondy, A., Fonlupt, J., Fouquet, JL., Fournier, JC., Ramírez Alfonsín, J.L. (eds) Graph Theory in Paris. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7400-6_19

Download citation

Publish with us

Policies and ethics