Skip to main content

A Graph-theoretical Generalization of Berge’s Analogue of the Erdős-Ko-Rado Theorem

  • Chapter
Graph Theory in Paris

Part of the book series: Trends in Mathematics ((TM))

  • 1283 Accesses

Abstract

A family A of r-subsets of the vertex set V(G) of a graph G is intersecting if any two of the r-subsets have a non-empty intersection. The graph G is r-EKR if a largest intersecting family A of independent r-subsets of V(G) may be obtained by taking all independent r-subsets containing some particular vertex.

In this paper, we show that if G consists of one path P raised to the power κ 0 ≥ 1, and s cycles 1 C, 2 C, ..., s C raised to the powers κ 1, κ 2, ..., κ s respectively, with

$$ {\text{min}}\left( {\omega {\text{(}}_{\text{1}} C^{k_{\text{1}} } {\text{), }}\omega {\text{(}}_{\text{2}} C^{k_{\text{2}} } {\text{),}}...{\text{,}}\omega {\text{(}}_{\text{s}} C^{k_s } {\text{)}}} \right) \geqslant \omega {\text{(}}P^{k_{\text{0}} } {\text{)}} \geqslant {\text{2}} $$

where ω(H) denotes the clique number of H, and if G has an independent r-set (so r is not too large), then G is r-EKR. An intersecting family of the largest possible size may be found by taking all independent r-subsets of V(G) containing one of the end-vertices of the path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Berge, Nombres de coloration de l’hypergraphe h-parti complet, Hypergraph Seminar (Proc. First Working Sem., Ohio State Univ., Columbus, Ohio, 1972), Springer, Berlin, 1974, pp. 13–20. Lecture Notes in Math., Vol. 411.

    Google Scholar 

  2. B. Bollobás and I. Leader, An Erdős-Ko-Rado theorem for signed sets, Comput. Math. Appl. 34 (1997), no. 11, 9–13, Graph theory in computer science, chemistry, and other fields (Las Cruces, NM, 1991).

    Article  MathSciNet  Google Scholar 

  3. D.E. Daykin, Erdős-Ko-Rado from Kruskal-Katona, J. Combinatorial Theory Ser. A 17 (1974), 254–255.

    Article  MathSciNet  Google Scholar 

  4. M. Deza and P. Frankl, Erdős-Ko-Rado theorem — 22 years later, SIAMJ. Algebraic Discrete Methods 4 (1983), no. 4, 419–431.

    MathSciNet  Google Scholar 

  5. K. Engel and P. Frankl, An Erdős-Ko-Rado theorem for integer sequences of given rank, European J. Combin. 7 (1986), no. 3, 215–220.

    MathSciNet  Google Scholar 

  6. P. Erdős, Chao Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313–320.

    MathSciNet  Google Scholar 

  7. P. Frankl and Z. Füredi, The Erdős-Ko-Rado theorem for integer sequences, SIAM J. Algebraic Discrete Methods 1 (1980), no. 4, 376–381.

    MathSciNet  Google Scholar 

  8. H.-D.O.F. Gronau, More on the Erdős-Ko-Rado theorem for integer sequences, J. Combin. Theory Ser. A 35 (1983), no. 3, 279–288.

    Article  MathSciNet  Google Scholar 

  9. A.J.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 18 (1967), 369–384.

    MathSciNet  Google Scholar 

  10. F.C. Holroyd, Problem 338 (BCC16.25), Erdős-Ko-Rado at the court of King Arthur, Discrete Math. 197/198 (1999), 812.

    Google Scholar 

  11. F.C. Holroyd, C. Spencer, and J. Talbot, Compression and Erdős-Ko-Rado graphs, Discrete Math. (to appear).

    Google Scholar 

  12. F.C. Holroyd and J. Talbot, Graphs with the Erdős-Ko-Rado property, Discrete Math. (to appear).

    Google Scholar 

  13. G.O.H. Katona, A simple proof of the Erdős-Chao Ko-Rado theorem, J. Combinatorial Theory Ser. B 13 (1972), 183–184.

    Article  MathSciNet  Google Scholar 

  14. J.C. Meyer, Quelques problèmes concernant les cliques des hypergraphes h-complets et q-parti h-complets, Hypergraph Seminar (Proc. First Working Sem., Ohio State Univ., Columbus, Ohio, 1972), Springer, Berlin, 1974, pp. 127–139. Lecture Notes in Math., Vol. 411.

    Google Scholar 

  15. J. Talbot, Intersecting families of separated sets, J. London Math. Soc. (2) 68 (2003), no. 1, 37–51.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Hilton, A.J.W., Spencer, C.L. (2006). A Graph-theoretical Generalization of Berge’s Analogue of the Erdős-Ko-Rado Theorem. In: Bondy, A., Fonlupt, J., Fouquet, JL., Fournier, JC., Ramírez Alfonsín, J.L. (eds) Graph Theory in Paris. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7400-6_18

Download citation

Publish with us

Policies and ethics