Advertisement

Claude Berge — Sculptor of Graph Theory

  • Bjarne Toft
Part of the Trends in Mathematics book series (TM)

Abstract

Claude Berge fashioned graph theory into an integrated and significant part of modern mathematics. As was clear to all who met him, he was a multifaceted person, whose achievements, however varied they might seem at first glance, were interconnected in many ways.

Keywords

Graph Theory Bipartite Graph Interval Graph Chordal Graph Perfect Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Berge, Théorie générale des jeux à n personnes, Memorial des sciences mathématiques 138, Gauthier-Villars (Paris) 1957.Google Scholar
  2. [2]
    C. Berge, Théorie des graphes et ses applications, Dunod (Paris) 1958. Translation: The Theory of Graphs and its Applications, Meuthen (London) and Wiley (New York) 1962. Republished as: The Theory of Graphs, Dover (New York) 2001.Google Scholar
  3. [3]
    C. Berge, Espaces topologiques, fonctions multivoques, Dunod (Paris) 1959 and 1962. Translation: Topological Spaces: including a Treatment of Multi-valued Functions, Vector Spaces and Convexity, Oliver and Boyd (Edinburgh and London) 1963. Republished as: Topological Spaces, Dover (New York) 1997.MATHGoogle Scholar
  4. [4]
    C. Berge, Les problèmes de coloration en théorie des graphes, Publ. Inst. Statist. Univ. Paris 9 (1960), 123–160.MathSciNetGoogle Scholar
  5. [5]
    C. Berge, Problèmes plaisants et delectables, Column in Le Journal de l’A.F.I.R.O., 1960–64.Google Scholar
  6. [6]
    C. Berge, Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind, Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg, Math.-Nat. X/1 (1960), 114–115.Google Scholar
  7. [7]
    C. Berge, Sculptures multipètres, présenté par Philippe Soupault, 1000 exemplaires numérotés, sur les presses de Lanord, imprimeur à Paris, 1962.Google Scholar
  8. [8]
    C. Berge and A. Ghouila-Houri, Programmes, jeux et réseaux de transport, Dunod 1962. Translation: Programming, games and transportation networks, Methuen and Wiley 1965.Google Scholar
  9. [9]
    C. Berge, Some classes of perfect graphs, in: Six Papers on Graph Theory, Indian Statistical Institute, Calcutta, 1963, 1–21.Google Scholar
  10. [10]
    C. Berge, Sur une conjecture relative au problème des codes optimaux de Shannon, in: Union Radio Scientifique Internationale, XIVe Assemblée Générale, Tokyo Sept. 9–20, 1963, Volume XIII-6, Ondes et Circuits Radio électriques, U.R.S.I. Bruxelles 1963, 317–318.Google Scholar
  11. [11]
    C. Berge, Une application de la Théorie des Graphes à un Problème de Codage, in: Automata Theory (ed. E.R. Caianiello), Academic Press 1966, 25–34.Google Scholar
  12. [12]
    C. Berge, Some classes of perfect graphs, in: Graph Theory and Theoretical Physics (ed. F. Harary), Academic Press 1967, 155–165.Google Scholar
  13. [13]
    C. Berge, Principes de combinatoire, Dunod 1968. Translation: Principles of Combinatorics, Academic Press 1971.Google Scholar
  14. [14]
    C. Berge, Some classes of perfect graphs, in: Combinatorial Mathematics and its Applications, Proceedings Conf. Univ. North Carolina, Chapel Hill 1967, Univ. North Carolina Press 1969, 539–552.Google Scholar
  15. [15]
    C. Berge, Graphes et hypergraphes, Dunod 1970. Translation: Graphs and Hypergraphs, North-Holland 1973.Google Scholar
  16. [16]
    Hypergraph Seminar, Proceedings First Working Sem. Ohio State Univ., Columbus Ohio 1972 (ed. C. Berge and D. Ray-Chaudhuri), Lecture Notes in Mathematics 411, Springer-Verlag 1974.Google Scholar
  17. [17]
    C. Berge, Fractional Graph Theory, Indian Statistical Institute Lecture Notes No. 1, The MacMillan Company of India 1978.Google Scholar
  18. [18]
    Topics on Perfect Graphs (edited by C. Berge and V. Chváatal), North-Holland Mathematical Studies 88, Annals of Discrete Math. 21, North-Holland 1984.Google Scholar
  19. [19]
    C. Berge, Hypergraphs, North-Holland 1989.Google Scholar
  20. [20]
    C. Berge, Graphs, North-Holland 1991.Google Scholar
  21. [21]
    C. Berge, The history of perfect graphs, Equipe Combinatoire 94/02, Mars 1994, preprint, 8 pages.Google Scholar
  22. [22]
    C. Berge, Qui a tué le duc de Densmore? Bibliotèehques Oulipienne No 67, limited edition of 150 copies, 1994, English translation: Who killed the Duke of Densmore? in [33].Google Scholar
  23. [23]
    C. Berge, Motivation and history of some of my conjectures, Discrete Math. 165/166 (1997), 61–70.CrossRefMathSciNetGoogle Scholar
  24. [24]
    M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Annals of Mathematics, to appear.Google Scholar
  25. [25]
    T. Gallai, On factorization of graphs, Acta Math.Acad. Sci. Hung. I (1950), 133–153.CrossRefMathSciNetGoogle Scholar
  26. [26]
    T. Gallai, Maximum-Minimum Sätze über Graphen, Acta Math. Acad. Sci. Hung. IX (1958), 395–434.CrossRefMathSciNetGoogle Scholar
  27. [27]
    T. Gallai, Graphen mit triangulierbaren ungeraden Vielecken, Publ. Math. Inst. Hung. Acad. Sci. 7, (1962), 3–36.MathSciNetGoogle Scholar
  28. [28]
    M. Gardner, Penrose Tiles to Trapdoor Ciphers and the Return of Dr. Matrix, Freeman 1989, updated, revised and republished by the Mathematical Association of America 1997.Google Scholar
  29. [29]
    A. Hajnal and J. Surányi, Über die Auflösung von Graphen in vollständige Teilgraphen, Ann.Univ. Budapest 1 (1958), 53–57.Google Scholar
  30. [30]
    T.R. Jensen and B. Toft, Graph Coloring Problems, Wiley Interscience 1995.Google Scholar
  31. [31]
    D. König, Theorie der endlichen und unendlichen Graphen, Teubner, Leipzig 1936.Google Scholar
  32. [32]
    OULIPO a primer of potential literature (W.F. Motte ed.), University of Nebraska Press 1986, and Dalkey ArchivePress, Illinois State University 1998.Google Scholar
  33. [33]
    OULIPO Laboratory. Papers by Raymond Queneaux, Italo Calvino, Paul Fournel, Claude Berge, Jaques Jouet and Harry Mathews, Atlas Anti-classics 1995.Google Scholar
  34. [34]
    M.A. Sainte-Laguë, Les réseaux (ou graphes), Mémorial des sciences mathématiques, Fascicule XVIII, Gauthier-Villars (Paris) 1926.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Bjarne Toft
    • 1
  1. 1.Mathematics and Computer ScienceUniversity of SouthernDenmarkOdense MDenmark

Personalised recommendations