Advertisement

Abstract

In Section 19.1 we deal with the question whether human life spans are limited or unlimited. The celebrated Gompertz law will be central for our considerations. We particularly apply the results of Section 6.5, concerning penultimate distributions, to this question. Section 19.2 concerns the prediction of life tables by adopting a regression approach.

Keywords

Life Span Life Table Hazard Rate Regression Approach Estimate Mortality Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.
    Abernethy, J. (1998). Gompertzian mortality originates in the winding-down of the mitotic clock. J. Theoretical Biology 192, 419–435.CrossRefGoogle Scholar
  2. 4.
    Carey, J.R., Liedo, P., Orozco, D. and Vaupel, J.W. (1992). Slowing of mortality rates at older ages in large medfly cohorts. Science 258, 457–461.CrossRefGoogle Scholar
  3. 5.
    Kolata, G., New views on life spans alter forecasts on elderly. The New York Times, Nov. 16, 1992.Google Scholar
  4. 6.
    Thatcher, A.R., Kannisto, V. and Vaupel, J.W.. (1998). The Force of Mortality at Ages 80 to 120. Odense University Press.Google Scholar
  5. 7.
    Kannisto, V. (1992). Presentation at a workshop on old age mortality at Odense University.Google Scholar
  6. 8.
    Himes, C.L., Preston, S.H. and Condran, G.A. (1994). A relational model of mortality at older ages in low mortality countries. Population Studies 48, 269–291.CrossRefGoogle Scholar
  7. 9.
    Aarssen, K. and de Haan, L. (1994). On the maximal life span of humans. Mathematical Population Studies 4, 259–281.MATHCrossRefGoogle Scholar
  8. 10.
    Gumbel, E.J. (1933). Das Alter des Methusalem. Z. Schweizerische Statistik und Volkswirtschaft 69, 516–530.Google Scholar
  9. 11.
    Galambos, J. and Macri, N. (2000). The life length of humans does not have a limit. J. Appl. Statist. Science.Google Scholar
  10. 12.
    Gavrilov, L.A. and Gavrilova, N.S. (1991). The Biology of Life Span: A Quantitative Approach. Harwood Academic Publishers, Chur (Russian edition by Nauka, Moscow (1986)).Google Scholar
  11. 14.
    Bomsdorf, E. and Trimborn M. (1992). Sterbetafel 2000. Modellrechnungen der Sterbetafel. Zeitschrift für die gesamte Versicherungswissenschaft 81, 457–485.CrossRefGoogle Scholar
  12. 15.
    Lühr, K.-H. (1986). Neue Sterbetafeln für die Rentenversicherung. Blätter DGVM XVII, 485–513.Google Scholar
  13. 16.
    Schmithals, B. and Schütz, E.U. (1995). Herleitung der DAV-Sterbetafel 1994 R für Rentenversicherungen (English title: Development of table DAV 1994 R for annuities). Blätter DGVM XXII, 29–69.Google Scholar
  14. 17.
    Reference is given to Kaufmann, E. and Hillgärtner, C. (1997). Extrapolating life tables to extreme life spans: a regression approach using XPL. In: 1st ed. of this book, Part V, pages 245–250.Google Scholar
  15. 18.
    Perls, T.T. (1995). Vitale Hochbetagte. Spektrum der Wissenschaft, März 3, 72–77.Google Scholar

Copyright information

© Birkhäuser Verlag AG 2007

Personalised recommendations