Skip to main content
  • 3791 Accesses

Abstract

Multivariate extreme value (EV) distributions are introduced as limiting distributions of componentwise taken maxima. In contrast to the univariate case, the resulting statistical model is a nonparametric one. Some basic properties and first examples of multivariate EV dfs are dealt with in Section 12.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reiss, R.-D. (1990). Asymptotic independence of marginal point processes of exceedances. Statist. & Decisions 8, 153–165. See also [43], Section 6.2.

    MATH  Google Scholar 

  2. Hashorva, E. (2005). Elliptical triangular arrays in the max-domain of attraction of Hüsler-Reiss distribution. Statist. Probab. Lett. 72, 125–135.

    Article  MATH  Google Scholar 

  3. Hashorva, E. (2006). On the max-domain of attraction of bivariate elliptical arrays. Extremes 8, 225–233.

    Article  Google Scholar 

  4. Such a representation is given in Joe, H. (1994). Multivariate extreme-value distributions with applications to environmental data. Canad. J. Statist. 22, 47–64. Replacing ΦΣ(k) by survivor functions (cf. (10.4)), one obtains the original representation.

    Article  MATH  Google Scholar 

  5. Falk, M. and Reiss, R.-D. (2001). Estimation of the canonical dependence parameter in a class of bivariate peaks-over-threshold models. Statist. Probab. Letters 52, 9–16

    Article  Google Scholar 

  6. Lee, L. (1979). Multivariate distributions having Weibull properties. J. Mult. Analysis 9, 267–277.

    Article  MATH  Google Scholar 

  7. Lu, J.-C. and Bhattacharya, G.K. (1991). Inference procedures for bivariate exponential model of Gumbel. Statist. Probab. Letters 12, 37–50.

    Article  MATH  Google Scholar 

  8. McFadden, D. (1978). Modelling the choice of residential location. In: Spatial Interaction Theory and Planning Models, pp. 75–96, A. Karlquist et al. (eds.), North Holland, Amsterdam. Reprinted in The Economics of Housing, Vol. I, pp. 531–552, J. Quigley (ed), Edward Elgar, London, 1997.

    Google Scholar 

  9. Cowing, T.G. and McFadden, D.L. (1984). Microeconomic Modeling and Policy Analysis. Academic Press, Orlando.

    Google Scholar 

  10. For supplementary results concerning multivariate EV models see [16] and Tiago de Oliveira, J. (1989). Statistical decisions for bivariate extremes. In [14], pp. 246–261, or Smith, R.L., Tawn, J.A. and Yuen, H.K. (1990). Statistics of multivariate extremes. ISI Review 58, 47–58.

    Google Scholar 

  11. Csörgő, S. and Welsh, A.H. (1989). Testing for exponential and Marshall-Olkin distributions. J. Statist. Plan. Inference 23, 287–300.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag AG

About this chapter

Cite this chapter

(2007). Multivariate Maxima. In: Statistical Analysis of Extreme Values. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7399-3_12

Download citation

Publish with us

Policies and ethics