Basic Multivariate Concepts and Visualization


This chapter provides a short introduction to several probabilistic and statistical concepts in the multivariate setting such as, e.g., dfs, contour plots, covariance matrices and densities (cf. Section 10.1), and the pertaining sample versions (cf. Section 10.2) which may be helpful for analysing data.


Contour Plot Random Vector Survivor Function Kernel Density Multivariate Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See Theorem A.2.2 in Bhattacharya, R.N. and Rao, R.R. (1976). Normal Approximation and Asymptotic Expansions. Wiley, New York.zbMATHGoogle Scholar
  2. 2.
    Falk, M., Becker, R. and Marohn, F. (2002). Foundations of Statistical Analyses and Applications with SAS. Birkhäuser, Basel.zbMATHGoogle Scholar
  3. 3.
    Little, R.J.A. and Rubin, D.B. (1987). Statistical Analysis with Missing Data. Wiley, New York.zbMATHGoogle Scholar
  4. 4.
    Joe, H. (1993). Parametric families of multivariate distributions with given marginals. J. Mult. Analysis 46, 262–282.zbMATHCrossRefGoogle Scholar
  5. 5.
    Mikosch, T. (2006). Copulas: tales and facts. Extremes 9, 3–20.CrossRefGoogle Scholar
  6. 6.
    Genest, C. and Rémillard, B. (2006). Discussion of “Copulas: tales and facts”, by Thomas Mikosch. Extremes 9, 27–36.CrossRefGoogle Scholar
  7. 7.
    Wiedemann, A., Drosdzol, A., Reiss, R.-D. and Thomas, M. (2005). Statistische Modellierung des Zinsänderungsrisikos. Teil 2: Multivariate Verteilungen. In: Modernes Risikomanagement (F. Romeike ed.). Wiley-VCH, Weinheim.Google Scholar
  8. 8.
    Hájek, J. and Šidak, Z. (1967). Theory of Rank Tests. Academic Press, New York.zbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag AG 2007

Personalised recommendations