Advertisement

Abstract

Chapter 1 is basic for the understanding of the main subjects treated in this book. It is assumed that the given data are generated according to a random mechanism that can be linked to some parametric statistical model.

Keywords

Return Level Generalize Pareto Distribution Left Endpoint Claim Size Poisson Random Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seal, H.L. (1969). Stochastic Theory of a Risk Business. Wiley, New York.MATHGoogle Scholar
  2. 2.
    Büuhlmann, H. (1970). Mathematical Methods in Risk Theory. Springer, Berlin.Google Scholar
  3. 5.
    Kolata, G. New views on life spans alter forecasts on elderly. The New York Times, Nov. 16. 1992.Google Scholar
  4. 6.
    We refer to Haight, F.A. (1967). Handbook of the Poisson Distribution. Wiley, New York; for a more recent monograph see Barbour, A.D., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford Studies in Probability. Oxford University Press.MATHGoogle Scholar
  5. 7.
    Mises von, R. (1936). La distribution de la plus grande de n valeurs. Rev. Math. Union Interbalcanique 1, 141–160. Reproduced in Selected Papers of Richard von Mises, Amer. Math. Soc. 2 (1964), 271–294.Google Scholar
  6. 8.
    Jenkinson, A.F. (1955). The frequency distribution of annual maximum (or minimum) values of meteorological elements. Quart. J. Roy. Meteorol. Soc. 81, 158–171.CrossRefGoogle Scholar
  7. 9.
    Fisher, R.A. and Tippett, L.H.C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Phil. Soc. 24, 180–190.CrossRefMATHGoogle Scholar
  8. 11.
    Balkema, A.A. and de Haan, L. (1974). Residual life time at great age. Ann. Probab. 2, 792–804. Parallel work was done by J. Pickands (1975). Statistical inference using extreme value order statistics. Ann. Statist. 3, 119–131.MATHGoogle Scholar
  9. 13.
    Drees, H. and Reiss, R.-D. (1992). Tail behavior in Wicksell’s corpuscle problem. In: Probability Theory and Applications, J. Galambos and I. Kátai (eds.), 205–220, Kluwer, Dortrecht.Google Scholar
  10. 14.
    Reiss, R.-D. (1989). Robust statistics: A converse view. 23rd Semester on Robustness and Nonparametric Statistics. Stefan Banach Center, Warsaw, Abstracts of Lectures, Part II, 183–184.Google Scholar
  11. 15.
    For details see, e.g., Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer, New York.MATHGoogle Scholar

Copyright information

© Birkhäuser Verlag AG 2007

Personalised recommendations