Advertisement

Entwurfsverfahren im Frequenzbereich

  • Ulrich Korn
  • Hans-Helmut Wilfert
Chapter
  • 46 Downloads

Zusammenfassung

Die im Abschn. 5. dargestellten, auf dem Zustandsraumkonzept beruhenden Entwurfsverfahren erwiesen sich als sehr erfolgreich, vor allem bei Anwendungen in der Luft- und Raumfahrt und verwandten Gebieten, da hier die für den Entwurf benötigten Zustandsraum-modeile aus den physikalischen Gesetzmäßigkeiten verhältnismäßig einfach und ausreichend genau abgeleitet werden können und die eigentliche Regelungsaufgabe tatsächlich in einer Zu-standsregelung besteht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Horowitz, J.M.; Shaked, U.: Superiority of transfer function over state-variable methods in linear time-invariant feedback system design. IEEE Trans. AC 20 (1975) S. 84–97.zbMATHCrossRefGoogle Scholar
  2. [2]
    Rosenbrock, H.-H.: Computer-aided control systems design. London, New York, San Francisko: Academic Press 1974.Google Scholar
  3. [3]
    Kuon, J.F.: Multivariable frequency-domain design techniques. Alberta: Ph. D. thesis University of Alberta, Canada, 1975.Google Scholar
  4. [4]
    MacFarlane, A.G.J.; Postlethwaite, I.: The generalized Nyquist stability criterion and multivariable root loci. Int. J. Control 25 (1977) S. 81–127.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Postlethwaite, I.: A generalized inverse Nyquist stability criterion. Int. J. Control 26 (1977) S. 325–340.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    MacFarlane, A.G.J.; Postlethwaite, I.: Characteristic frequency functions and characteristic gain functions. Int. J. Control 26 (1977) S. 265–278.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Rosenbrock, H.-H.; Cook, P. A.: Stability and eigenvalues of G(s). Int. J. Control 21 (1975) S. 99–104.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    MacFarlane, A.G.J.; Postlethwaite, I.: Extended Principle of the Argument. Int. J. Control 27 (1978) S. 49–55.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Nwokah, O.J.: Stability and the eigenvalues of G(s). Int. J. Control 22 (1975) S. 125 bis 128.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Ramani, N.; Atherton, D.P.: A note on the stability and eigenvalues of G(s). Int. J. Control 22 (1975) S. 701–704.zbMATHCrossRefGoogle Scholar
  11. [11]
    Schwarz, H.: Mehrfachregelungen, Bd. 1. Berlin, Heidelberg, New York: Springer-Verlag 1967.zbMATHGoogle Scholar
  12. [12]
    Gille, J.C.; Pelegrin, M.; Decaulne, P.: Theorie der Regelungen, Bd. 1. Berlin: VEB Verlag Technik und München, Wien: R. Oldenbourg Verlag 1960.zbMATHGoogle Scholar
  13. [13]
    MacFarlane, A.G.J.: The return-difference and return-ratio matrices and their use in the analysis and design of multivariable feedback control systems, Proc. IEE 117 (1970) S. 2037–2059.MathSciNetGoogle Scholar
  14. [14]
    Zurmühl, R.: Matrizen. 4. Aufl. Berlin, Göttingen, Heidelberg: Springer-Verlag 1964.zbMATHGoogle Scholar
  15. [15]
    Belletrutti, J.J.; MacFarlane, A.G.J.: Characteristic loci techniques in multivariable control system design. Proc. IEE 118 (1971) S. 1291–1297.Google Scholar
  16. [16]
    MacFarlane, A.G.J.; Belletrutti, J.J.: The characteristic locus design method. Automatica 9 (1973) S. 575–588.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    MacFarlane, A.G.J.: Commutative Controller: A new technique for the design of multivariable control systems. Electronics Letters 6 (1970) S. 121–123.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Layton, J.M.: Commutative controller: a critical survey. Electronic Letters 6 (1970) S. 362–364.CrossRefGoogle Scholar
  19. [19]
    MacFarlane, A.G.J.: A survey of some recent results in linear multivariable feedback theory. Automatica 8 (1972) S. 455–492.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    Owens, D.H.: Dyadic approximation method for multivariable control systems analysis with a nuclear-reactor application. Proc. IEE 120 (1973) S. 801–809.Google Scholar
  21. [21]
    Owens, D.H.: Modal decoupling and dyadic transfer function matrix. Int. J. Control 23 (1976) S. 63–65.zbMATHCrossRefGoogle Scholar
  22. [22]
    Owens, D.H.: Dyadic expansion, characteristic loci and multivariable-control-systems design. Proc. IEE 122 (1975) S. 315–320.MathSciNetGoogle Scholar
  23. [23]
    Owens, D.H.; Marshall, S.A.: Analysis of a power station boiler model using a dyadic expansion. Preprints of the 3. IFAC-Symposium on Multivariable Technological Systems Manchester 1974. Paper S. 38.Google Scholar
  24. [24]
    Owens, D.H.: Dyadic approximation about a general frequency point. Electronics letters 11 (1975) S. 331–332.CrossRefGoogle Scholar
  25. [25]
    Belletrutti, J.J.; MacFarlane, A.G.J.: Characteristic loci techniques in multiva-riable-control-systems design. Proc. IEE 118 (1971) S. 1291–1297.Google Scholar
  26. [26]
    Belletrutti, J.J.: Computer aided design and the characteristic locus method. Conference on Computer Aided Design, IEE Conference Publication 96 (1973) S. 79–86.Google Scholar
  27. [27]
    MacFarlane, A.G.J.; Belletrutti, J.J.: The characteristic locus design method. Automatica 9 (1973) S. 575–588.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    MacFarlane, A.G.J.; Kouvaritakis, B.: A design technique for linear multivariable feedback systems. Int.J. Control 25 (1977) S. 837–874.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    Rosenbrock, H.H.: Design of multivariable control systems using the inverse Ny-quist array. Proc. Inst. Elect. Eng. 116 (1969) S. 1929–1936.CrossRefGoogle Scholar
  30. [30]
    Mee, D.H.: Specifications and criteria for multivariable control system design. Proc. of the 1976 Joint Autom. Control Conf., S. 627-633.Google Scholar
  31. [31]
    Ostrowski, A.M.: Note on bounds for determinants with dominant principal diagonal. Proc. Am. Math. Soc. 3 (1952) S. 26–30.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    Rosenbrock, H.H.: State-space and multivariable theory. Nelson, London, 1970.zbMATHGoogle Scholar
  33. [33]
    Hawkins, D.J.: “Pseudodiagonalization” and the inverse-Nyquist-array method. Proc. IEE 119 (1972) S. 337–342.MathSciNetGoogle Scholar
  34. [34]
    Leininger, G.G.: Diagonal dominance using function minimization algorithms. Preprints of the 4. IFAC-Symposium on Multivariable Technological systems, Frede-ricton 1977, S. 105-112.Google Scholar
  35. [35]
    Fiedler, M.; Ptak, V.: On matrices with nonpositive off-diagonal elements and positive principal minors. Czech. Math. J. 12 (1962) S. 382–400.MathSciNetGoogle Scholar
  36. [36]
    Araki, M.; Nwokah, O.: Bounds for closed-loop transfer functions of multivariable systems. IEEE Trans. AC 20 (1975) S. 666–670.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    Böttinger, F.; Engell, S.: Entwurf von Zweigrößensystemen mit dem Mehrgrößen-Nyquist-Verfahren. Regelungstechnik 2 7 (1979) S. 143–150.Google Scholar
  38. [38]
    Munro, N.: Conversational mode C.A.D. of control systems using display terminals. IEE International Conf. on Computer Aided Design, Southampton 1972, S. 418 bis 431.Google Scholar
  39. [39]
    Munro, N.: Computer aided design of multivariable sampled-data systems. IEE Conference on Computer Aided Design Cambridge 1973, S. 133-148.Google Scholar
  40. [40]
    Allen, A.J.; Atkinson, P.: Interactive design of sampled-data control systems. IEE Conference on Computer Aided Design. Cambridge 1973, S. 141-148.Google Scholar
  41. [41]
    Crossley, T.R.: Envelope curves to inverse Nyquist array diagrams. Int. J. Control 22 (1975) S. 57–63.zbMATHCrossRefGoogle Scholar
  42. [42]
    McMorran, S.M.: Design of gas-turbine controller using inverse Nyquist Method. Proc. IEE 117 (1970) S. 2050–2056.Google Scholar
  43. [43]
    Ahson, S.J.; Nicholson, H.: Improvement of turbo-alternator response using the inverse Nyquist array method. Int. J. Control 23 (1976) S. 657–672.CrossRefGoogle Scholar
  44. [44]
    Sinha, A.K.; Rutherford, D.A.: Computer-aided controller design for paper machine. Proc. IEE 123 (1976) S. 1021–1025.Google Scholar
  45. [65]
    Crossley, T.R.; Munro, N.; Henthorn, K.S.: Design of aircraft autostabilization systems using the inverse Nyquist array method. Preprints of the 4. IFAC-Symposium on Multivariable Technological systems, Fredericton, 1977, S. 625-631.Google Scholar
  46. [46]
    Fisher, D.G.; Kuon, J.F.: Comparison and experimental evaluation of multivariable frequency-domain design techniques. Preprints of the 4. IFAC-Symposium on Multi-variable Technological Systems, Fredericton, 1977, S. 453-462.Google Scholar
  47. [47]
    Munro, N.: Application of the inverse Nyquist array design method. Proc. of the 1978 Joint Automatic Control Conf., S. 348-353.Google Scholar
  48. [48]
    Schafer, R.M.; Gejji, R.R.; Hoppner, P.W.: Frequency domain compensation of a Dyngen turbofan engine model. Proc. of the 1978 Joint Automatic Control Conf., S. 1013-1018.Google Scholar
  49. [49]
    Hughes, F.M.: A simplified frequency-response design approach for power-station control. Int. J. Control 25 (1977) S. 575–587.CrossRefGoogle Scholar
  50. [50]
    Lauckner, G.; Wilfert, H.-H.: Entwurf einer mehrvariablen Blockregelung im Frequenzbereich für einen braunkohlegefeuerten 210-MW-Kraftwerkblock auf der Basis seines experimentell ermittelten Übertragungsmodells. Vorabdrucke des XXIV. IWK, Ilmenau 1979.Google Scholar
  51. [51]
    Hughes, F.M.; Mallouppa, A.: Application of frequency response methods to nuclear power station oncetrough boiler control. Preprints of the 3. IFAC-Symposium on Multivariable Technological Systems, Manchester 1974. Vortrag F3.Google Scholar
  52. [52]
    Munro, N.; Winterbone, D.E.; Lourtie, P.M.G.: Design of a multivariable controller for an automotive gas turbine. Preprints of the 3. IFAC-Symposium on Multivariable Technological Systems, Manchester 1974. Vortrag F4.Google Scholar
  53. [53]
    Lauckner, G.; Wilfert, H.-H.; Förster, V.: Untersuchung der Leistungsfähigkeit eines ausgewählten Entwurfsverfahrens im Frequenzbereich für lineare Mehrfachregelungen am experimentell gewonnenen Modell eines 210-MW-Kraftwerksblockes. Forschungsbericht ZKI der AdW 1979.Google Scholar
  54. [54]
    McMorran, P.D.: Parameter sensitivity and inverse Nyquist method. Proc. IEE 118 (1971) S. 802–804.Google Scholar
  55. [55]
    Hawkins, D.J.: “Techniques for the design of multivariable control systems”. Ph.D. Thesis, Control System Control, Institute of Science and Technology, The University of Manchester 1972.Google Scholar
  56. [56]
    Ibrahim, T.A.S.; Munro, N.: Design of sampled-data multivariable control systems using the inverse Nyquist array. Int. J. Control 22 (1975) S. 297–311.zbMATHCrossRefGoogle Scholar
  57. [57]
    Ahson, S.J.; Nicholson, H.: Inverse-Nyquist-array design with minimum sensitivity. Proc. IEEE 123 (1976) S. 457–461.Google Scholar
  58. [58]
    Schafer, R.M.; Sain, M.K.: Input compensation for dominance of turbofane models. Proceedings of the International Forum on Alternatives for Multivariable Control. Chicago, Ill. 13./14. Oct. 1977, S. 45-78.Google Scholar
  59. [59]
    Wilfert, H.-H.; Marschner, H.-H.; Hertel, U.: Experimentelle Identifikation eines 210-MW-Kraftwerksblockes als Mehrgrößensystem, msr 21 (1978) S. 567–572.Google Scholar
  60. [60]
    Mayne, D.Q.: The design of linear multivariable systems. Automatic a 9 (1973) S. 201–207.zbMATHCrossRefGoogle Scholar
  61. [61]
    Mayne, D.Q.; Chuang, S.C.: The sequential return difference method for designing linear multivariable systems. IEE Conference on Computer Aided Design Cambridge, 1973. S. 87-93.Google Scholar
  62. [62]
    Rosenbrock, H.-H.: The stability of multivariable systems. IEEE AC 17 (1972) S. 105–107.MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    Daly, K.C.; Chuang, S.C.: Design of multivariable digital control system using the sequential return difference method. Proc. IEE 123 (1976) S. 98–100.Google Scholar
  64. [64]
    Owens, D.H.: Dyadic modification to sequential technique for multivariable-control-systems design. Electronics letters 10 (1974) S. 25–26.MathSciNetCrossRefGoogle Scholar
  65. [65]
    Snaked, U.; MacFarlane, A.G.J.: Design of linear multivariable systems for stability under large parameter uncertainty. Preprints of the 4. IFAC-Symposium on Multivariable Technological systems Fredericton 1977. S. 149-157.Google Scholar
  66. [66]
    Mayne, D.Q.: Sequential design of linear multivariable systems. Proc. IEE 126 (1979) S. 558–572.Google Scholar
  67. [67]
    Leininger, G.G.: Diagonal dominance for multivariable Nyquist array methods using Function Minimization. Automatica 15 (1979) S. 339–345.zbMATHCrossRefGoogle Scholar
  68. [68]
    Unbehauen, H.: Rechnergestützter Entwurf von Mehrgrößenregelungen im Frequenzbereich. Vorabdrucke 24. IWK Ilmenau 1979, Heft 1, S. 99-106.Google Scholar
  69. [69]
    Damert, K.; Greeske, H.; Reinig, G.; Werner, B.: Anwendung verschiedener Identifikationsverfahren für Steuerungsobjekte in der chemischen Technologie, In: Autorenkollektiv “Einsatzvorbereitung von Prozeßrechnern”. Berlin: Akademie-Verlag 1978, S. 81–135.Google Scholar
  70. [70]
    Postlethwaite, J.: Algebraic-function theory in the analysis of multivariable feedback systems. Proc. IEE 126 (1979) S. 555–562.MathSciNetGoogle Scholar
  71. [71]
    Owens, D.H.: Dyadic expansions and their applications. Proc. IEE 126 (1979) S. 563 bis 567.MathSciNetGoogle Scholar
  72. [72]
    Kouvaritakis, B.A.: Theory and practice of the characteristic locus design method. Proc. IEE 126 (1979) S. 542–548.MathSciNetGoogle Scholar
  73. [73]
    Ovens, H.: Dyadic modification to sequential technique for multivariable control systems design. Electronics letters 10 (1974) S. 25–26.CrossRefGoogle Scholar
  74. [74]
    Chuang, S.C.: Design of linear multivariable systems by sequential return difference method. Proc. IEE 121 (1974) S. 745–747.Google Scholar
  75. [75]
    Rosenbrock, H.H.: On the design of linear multivariable control systems. Proc. of the in. IFAC-Congress London 1966, Vol. 1, paper 1.A.Google Scholar
  76. [76]
    Unbehauen, H.; Engell, S.: Anwendung des Mehrgrößen-Nyquist-Verfahren s auf ein Dampferzeugermodell. Regelungstechnik 27 (1979) S. 250–259.Google Scholar
  77. [77]
    Ostrowski, A.: Über die Determinanten mit überwiegender Hauptdiagonale. Comment. Math. Helveticii 10 (1937).Google Scholar
  78. [78]
    Nwokah, O. J.: A recurrent issue on the extended Nyquist array. Int. J. Control 31 (1980) S. 609–614.MathSciNetzbMATHCrossRefGoogle Scholar
  79. [79]
    Lauckner, G.: Analyse und Entwurf von Mehrgrößenregelungen im Frequenzbereich unter besonderer Berücksichtigung von Allpaßverhalten der Regelstrecke. Diss. ATU Dresden, eingereicht 1981.Google Scholar

Copyright information

© VEB Verlag Technik, Berlin 1982

Authors and Affiliations

  • Ulrich Korn
    • 1
  • Hans-Helmut Wilfert
    • 2
  1. 1.MagdeburgDeutschland
  2. 2.DresdenDeutschland

Personalised recommendations