Skip to main content

Leukocytes, Macrophages and Secondary Brain Damage Following Cerebral Ischemia

  • Conference paper
Mechanisms of Secondary Brain Damage in Cerebral Ischemia and Trauma

Part of the book series: Acta Neurochirurgica ((NEUROCHIRURGICA,volume 66))

Summary

The involvement of white blood cells in microvascular derangement as a cause of secondary brain damage following cerebral ischemia is reviewed. Relevant data from the literature are arranged in the chronological sequence of the microvascular derangement of the brain that occurs after cerebral arterial occlusion (as based on our own experimental observations). The inflammatory processes which appeared to be elicited by polymorphonuclear leukocytes (PMNL) in the ischemic region of the brain may begin with adhesion of PMNLs to endothelial cells, followed by blood-brain barrier disruption, transudation/exudation, edema, necrosis, and scar formation. Stimulated by cytokines released from damaged neurons and axons, two types of macrophages (ameboid and ramified) appear, increase in number in the ischemic lesion, and engulf the debris of dead neurons, degenerated axons. Further, macrophages may release cytokines which stimulate healing processes, such as astroglial proliferation and revascularization, and release neurotoxins which could gradually kill surviving neurons. Even under such circumstances, individual leukocytes/macrophages are well regulated by specific mediators/cytokines. An urgent task is thus to find ways of controlling these key mediators/cytokines to reduce the inflammatory process and the extent of neuronal death for attenuating the secondary brain damage, without altering their beneficial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barone FC, Hillegass LM, Price WJ, White RF, Lee EV, Feuerstein GZ, Sarau HM, Clark RK, Griswold DE (1991) Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: Myeloperoxidase activity assay and histologic verification. J Neurosci Res 29: 336–345

    Article  PubMed  CAS  Google Scholar 

  2. Bednar MM, Raymond S, McAuliffe T, Lodge PA, Gross CE (1991) The role of neutrophils and platelets in a rabbit model of thromboembolic stroke. Stroke 22: 44–50

    Article  PubMed  CAS  Google Scholar 

  3. Bussolino F, Alessi D, Turello E, Camussi G (1991) Role of platelet activating factor in the adhesion process of polymorphonuclear neutrophils to endothelial cells. In: Hörl WH, Schollmeyer PJ (eds) New aspects of human polymorphonuclear leukocytes. Plenum, New York, pp 55–64

    Google Scholar 

  4. Chan PH, Longar S, Fishman RA (1987) Protective effects of liposome-entrapped superoxide dismutase on posttraumatic brain edema. Ann Neurol 21; 540–547

    Article  PubMed  CAS  Google Scholar 

  5. Ciuffetti G, Balendra R, Lennie SE, Anderson J, Lowe GDO (1989) Impaired filterability of white cells in acute cerebral infarction. B M J 298: 930–931

    Article  PubMed  CAS  Google Scholar 

  6. Clark WM, Madden KP, Rothlein R,Zivin JA (1991) Reduction of central nervous system ischemic injury in rabbits using leukocyte adhesion antibody treatment. Stroke 22: 877–883

    CAS  Google Scholar 

  7. Davis EJ, Foster TD, Thomas WE (1994) Cellular forms and function of brain microglia. Brain Res Bull 34 (1): 73–78

    Article  PubMed  CAS  Google Scholar 

  8. del Zoppo GJ, Garcia JH (1995) Polymorphonuclear leukocyte adhesion in cerebrovascular ischemia: Pathophysiologic implications of leukocyte adhesion. In: Granger DN, Schmid-Schönbein GW (eds) Physiology and pathophysiology of leukocyte adhesion. Oxford University Press, New York, pp 408–425

    Google Scholar 

  9. del Zoppo GJ, Schmid-Schönbein GW, Mori E, Copeland BR, Chang C-M (1991) Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 22: 1276–1283

    Article  PubMed  Google Scholar 

  10. Dorovini-Zis K, Bowman PD (1992) Adhesion and migration of human polymorphonuclear leukocytes across cultured bovine brain microvessel endothelial cells. J Neuropathol Exp Neurol 51: 194–205

    Article  PubMed  CAS  Google Scholar 

  11. Dutka AJ, Kochanek PM, Hallenbeck JM (1989) Influence of granulocytopenia on canine cerebral ischemia induced by air embolism. Stroke 20: 390–395

    Article  PubMed  CAS  Google Scholar 

  12. Ernst E, Matrai A, Paulsen F (1987) Leukocyte rheology in recent stroke. Stroke 18: 59–62

    Article  PubMed  CAS  Google Scholar 

  13. Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ (1994) The influx of leukocytes and platelets in an evolving brain infarct ( Wistar rat ). Am J Pathol 144: 189–199

    Google Scholar 

  14. Giulian D (1987) Ameboid microglia as effectors of inflammation in the central nervous system. Neurosci Res J 18: 155–171

    Article  CAS  Google Scholar 

  15. Giulian D, Li J, Leara B, Keenen C (1994) Phagocytic microglia release cytokines and cytotoxins that regulate the survival of astrocytes and neurons in culture. Neurochem Int 25: 227–233

    Article  PubMed  CAS  Google Scholar 

  16. Giulian D, Robertson C (1990) Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Ann Neurol 27: 33–42

    Article  PubMed  CAS  Google Scholar 

  17. Giulian D, Vaca K (1993) Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system. Stroke 24 [Suppl 1]: 184–190

    Google Scholar 

  18. Grogaad B, Schurer L, Gerdin B, Arfors KE (1989) Delayed hypoperfusion after incomplete forebrain ischemia in the rat: The role of poly morphonuclear leukocytes. J Cereb Blood Flow Metab 9: 500–505

    Article  Google Scholar 

  19. Grau AJ, Berger E, Sung K-LP, Schmid-Schonbein GW (1992) Granulocyte adhesion, deformability, and superoxide formation in acute stroke. Stroke 23: 33–39

    Article  PubMed  CAS  Google Scholar 

  20. Haapaniemi H, Tomita M, Tanahashi N, Takeda H, Yokoyama Y, Fukuuchi Y (1995) Non-amoeboid locomotion of cultured microglia obtained from newborn rat brain. Neurosci Lett 193: 121–124

    Article  PubMed  CAS  Google Scholar 

  21. Hallenbeck JM, Dutka AJ (1990) Background review and current concepts of reperfusion injury. Arch Neurol 47: 1245–1254

    Article  PubMed  CAS  Google Scholar 

  22. Hallenbeck JM, Dutka AJ, Tanishima T, Kochanek PM, Kumaroo KK, Thompson CB, Obrenovitch TP, Contreras TJ (1986) Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke 17: 246–253

    Article  PubMed  CAS  Google Scholar 

  23. Helps SC, Gorman DF (1991) Air embolism of the brain in rabbits pretreated with mechlorethamine. Stroke 22: 351–354

    Article  PubMed  CAS  Google Scholar 

  24. Kobari M, Gotoh F, Tomita M, Tanahashi N, Tanaka K (1983) Vulnerability of cerebral venous flow following middle cerebral arterial occlusion in cats. In: Auer LM, Loew F (eds) The cerebral veins. Springer, Wien New York, pp 287–291

    Google Scholar 

  25. Kochanek PM, Hallenbeck JM (1992) Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke 23: 1367–1379

    Article  PubMed  CAS  Google Scholar 

  26. Kulka J (1969) Injurious effects of microcirculation impairment in inflammatory disorders. In: Winters WL Jr, Brest AN (eds) The microcirculation. Thomas, Springfield, pp 174–189

    Google Scholar 

  27. Lindsberg PJ, Hallenbeck JM, Feuerstein G (1991) Platelet-activating factor in stroke and brain injury. Ann Neurol 30: 117–129

    Article  PubMed  CAS  Google Scholar 

  28. Means ED, Anderson DK (1983) Neuronophagia by leukocytes in experimental spinal cord injury. J Neuropathol Exp Neurol 42: 707–719

    Article  PubMed  CAS  Google Scholar 

  29. Mercuri M, Ciuffetti G, Robinson M, Toole J (1989) Blood cell rheology in acute cerebral infarction. Stroke 20: 959–962

    Article  PubMed  CAS  Google Scholar 

  30. Mori E, del Zoppo GJ, Chambers JD, Copeland BR, Arfors KE (1992) Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 23: 712–718

    Article  PubMed  CAS  Google Scholar 

  31. Murota S, Fujita H, Morita I (1993) Involvement of adhesion molecules in vascular endothelial cell injury by oxygen radicals released from activated leukocytes. In: Tanabe T (ed) Intractable vasculitis syndromes. Hokkaido University Press, pp 115–122

    Google Scholar 

  32. Nakajima K, Hamanoue M, Shimojo M, Takei N, Kohsaka S (1989) Characterization of microglia isolated from a primary culture of embryonic rat brain by a simplified method. Biomed Res 10 [Suppl 3]: 411–423

    Google Scholar 

  33. Nawroth PP, Stern DM (1986) Modulation of endothelial cell hemostatic properties by tumor necrosis factor. Exp Med J 163: 740–745

    Article  CAS  Google Scholar 

  34. Pozzilli C, Lenzi GL, Argentino C, Carolei A, Rasura M, Si-gnore A, Bozzao L, Pozzilli P (1985) Imaging of leukocytic infiltration in human cerebral infarcts. Stroke 16 (2): 251–255

    Article  PubMed  CAS  Google Scholar 

  35. Rosenblum WI, El-Sabban F (1982) Influence of shear rate on platelet aggregation in cerebral micro vessels. Micro vase Res 23: 311–315

    Article  CAS  Google Scholar 

  36. Samuelsson B (1983) Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation. Science 220: 568–575

    Article  PubMed  CAS  Google Scholar 

  37. Schott R, Natale JE, Ressler SW, Burney RE, D’Alecy LG, Michigan AA (1989) Neutrophil depletion fails to improve neurologic outcome after cardiac arrest in dogs. Ann Emerg Med 18: 517–522

    Article  PubMed  CAS  Google Scholar 

  38. Shiga Y, Onodera H, Matsuo Y, Kogure K (1992) Cyclosporin A protects against ischemia-reperfusion injury in the brain. Brain Res 595: 145–148

    Article  PubMed  CAS  Google Scholar 

  39. Siren A-L, McCarron RM, Liu Y, Spatz M, Feuerstein G, Hallenbeck JM (1993) Adhesion receptor expression and perivascular monocyte accumulation in carotid arteries and brains of hypertensive rats. In: Tomita M, Mchedlishvili G, Rosenblum WI, Heiss W-D, Fukuuchi Y (eds) Microcirculatory stasis in the brain, ICS 1031. Excerpta Medica, Amsterdam, pp 169–175

    Google Scholar 

  40. Suematsu M, Schmid-Schonbein GW, Chavez-Chavez RH, Yee TT, Tamatani T, Miyasaka M (1993) In vivo visualization of oxidative changes in micro vessels during neutrophil activation. Am J Physiol 264: H881 - H891

    PubMed  CAS  Google Scholar 

  41. Takeshima R, Kirsch JR, Koehler RC, Gomoll AW, Traystman RJ (1992) Monoclonal leukocyte antibody does not decrease the injury of transient focal cerebral ischemia in cats. Stroke 23: 247–252

    Article  PubMed  CAS  Google Scholar 

  42. Tanahashi N, Fukuuchi Y, Tomita M, Kobari M, Shinohara T, Yamawaki T, Konno S, Takeda H (1993) Platelet-activating factor antagonist (TCV-309) ameliorates post-ischemic delayed hypoperfusion after 30-s cardiac arrest in cats. In: Tomita M, Mchedlishvili G, Rosenblum WI, Heiss W-D, Fukuuchi Y (eds) Microcirculatory stasis in the brain, ICS 1031. Excerpta Medica, Amsterdam, pp 203–210

    Google Scholar 

  43. Tanahashi N (1988) Cerebral microvascular reserve for hyperemia. In: Tomita M, Sawada T, Naritomi H, Heiss W-D (eds) Cerebral hyperemia and ischemia, ICS 764. Excerpta Medica, Amsterdam, pp 173–182

    Google Scholar 

  44. Tanaka K, Gotoh F, Fukuuchi Y, Amano T, Suzuki N, Uematsu D, Kawamura J, Yamawaki T, Itoh N, Obara K (1988) Stable prostacyclin analogue preventing microcirculatory derangement in experimental cerebral ischemia in cats. Stroke 19: 1267–1274

    Article  PubMed  CAS  Google Scholar 

  45. Tomita M (1988) Significance of cerebral blood volume. In: Tomita M, Sawada T, Naritomi H, Heiss W-D (eds) Cerebral hyperemia and ischemia, ICS 764. Excerpta Medica, Amsterdam, pp 3–31

    Google Scholar 

  46. Tomita M (1993) Microcirculatory stasis in the brain. In: Tomita M, Mchedlishvili G, Rosenblum WI, Heiss W-D, Fukuuchi Y (eds) Microcirculatory stasis in the brain, ICS 1031. Excerpta Medica, Amsterdam, pp 1–7

    Google Scholar 

  47. Tomita F, Fukuuchi Y, Tanahashi N, Kobari M, Terayama Y, Shinohara T, Konno S, Takeda H, Itoh D, Yokoyama M, Terakawa S, Haapaniemi H (1995) Activated leukocytes, endothelial cells, and effects of pentoxifylline: Observations by VEC- DIC microscopy. J Cardiovasc Pharmacol 25 [Suppl 2]: S34 - S39

    Article  PubMed  CAS  Google Scholar 

  48. Tomita M, Fukuuchi Y, Terakawa S (1994) Differential behavior of glial and neuronal cells exposed to hypotonic solution. Acta Neurochir (Wien) [Suppl] 60: 31–33

    CAS  Google Scholar 

  49. Tomita M, Fukuuchi Y, Tanahashi N, Kobari M, Shinohara T, Terayama Y, Ohta K, Takeda H, Yokoyama M (1995) White cell depletion facilitates CBV recovery from ischemia following MCA occlusion in cats. Proc 18th Int Salzburg Conference.

    Google Scholar 

  50. Tomita M, Gotoh F (1992) Cascade of cell swelling (cytotoxic edema): Thermodynamic potential discharge of brain cells following membrane injury. Am J Physiol 262: H603 - H610

    PubMed  CAS  Google Scholar 

  51. Tornita M, Gotoh F, Amano T, Tanahashi N, Kobari M, Shinohara T, Mihara B (1983) Transfer function through regional cerebral cortex evaluated by a photoelectric method. Am J Physiol 245: H385 - H398

    Google Scholar 

  52. Tomita M, Gotoh F, Amano T, Tanahashi N, Tanaka K (1980) Low perfusion hyperemia following middle cerebral arterial occlusion in cats of different age groups. Stroke 11: 629–636

    Article  PubMed  CAS  Google Scholar 

  53. Tomita M, Gotoh F, Sato T, Amano T, Tanahashi N, Tanaka K, Yamamoto M (1978) Photoelectric method for estimating hemodynamic changes in regional cerebral tissue. Am J Physiol 235: H56 - H63

    PubMed  CAS  Google Scholar 

  54. Turcani P, Gotoh F, Tomita M, Tanahashi N, Kobari M, Terayama Y, Mihara B, Ohta K (1987) Role of platelets and leukocytes in the development of low perfusion hyperemia in the cerebral ischemic area of cats. In: Meyer JS, Lechner H, Reivich M, Ott EO (eds) Cerebral vascular disease 6. Excerpta Medica, Amsterdam, pp 285–289

    Google Scholar 

  55. Vermes I, Strik F (1988) Altered leukocyte rheology in patients with chronic cerebrovascular disease. Stroke 19: 631–633

    Article  PubMed  CAS  Google Scholar 

  56. Violi F, Rasura M, Alessandri C, Intiso D, Germani M, Servi M, Balsano F (1988) Leukocyte response in patients suffering from acute stroke. Stroke 19: 1283–1284

    Article  PubMed  CAS  Google Scholar 

  57. Wang PY, Kao CH, Mui MY, Wang SJ (1993) Leukocytic infiltration in acute hemispheric ischemic stroke. Stroke 24: 236–240

    Article  PubMed  CAS  Google Scholar 

  58. Yokoyama M, Fukuuchi Y, Tornita M, Tanahashi N, Kobari M, Konno S, Takeda H, Ito D, Terakawa S (1994) PMNL activation: Observations by VEC microscopy (Abstract). In: Tsuchiya M, Asano M, Ohhashi T (eds) Microcirculation Annual 1994. Nihon-Igakukan, Tokyo, pp 165–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this paper

Cite this paper

Tomita, M., Fukuuchi, Y. (1996). Leukocytes, Macrophages and Secondary Brain Damage Following Cerebral Ischemia. In: Baethmann, A., Kempski, O.S., Plesnila, N., Staub, F. (eds) Mechanisms of Secondary Brain Damage in Cerebral Ischemia and Trauma. Acta Neurochirurgica, vol 66. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9465-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9465-2_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9467-6

  • Online ISBN: 978-3-7091-9465-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics