Skip to main content

Environmental Influence on Outcome After Experimental Brain Infarction

  • Conference paper
Mechanisms of Secondary Brain Damage in Cerebral Ischemia and Trauma

Part of the book series: Acta Neurochirurgica ((NEUROCHIRURGICA,volume 66))

  • 126 Accesses

Summary

After permanent ligation of the middle cerebral artery the motor function of rats housed in an enriched environment, i.e. cages with opportunities for various activities but not forcing the rats to do any particular task, is significantly better than in rats housed in individual cages. Rats kept in an enriched environment before and after MCA ligation improved sooner and slightly more than those placed in the enriched environment after ischemia but with no lasting significant difference except for climbing. Preliminary studies suggest that social stimulation is more important than physical activity. Rats with fetal neocortical grafts implanted into the infarct cavity performed better if exposed to enriched environment than grafted control rats housed in standard laboratory cages with 5 rats in each cage. However, they did not perform better than non-grafted rats housed in the same enriched environment. The infarct size did not differ between rats housed in an enriched environment and control rats. There was no correlation between infarct size and performance in rats exposed to an enriched environment. The improved motor function suggests that a rich environment may stimulate mechanisms that enhance brain plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachy-Rita P (1990) Receptor plasticity and volume transmission in the brain: emerging concepts with reference to neurological rehabilitation. J Neuro Rehab 4: 121–128

    Google Scholar 

  2. Brailowsky S, Knight RT, Blood K, Scabini D (1986) Yaminobutyric acid-induced potentiation of cortical hemiplegia. Brain Res 362: 322–330

    Article  PubMed  CAS  Google Scholar 

  3. Calford MB, Tweedale R (1990) Interhemispheric transfer of plasticity in the cerebral cortex. Science 249: 805–807

    Article  PubMed  CAS  Google Scholar 

  4. Chino YM, Kaas JH, Smith III EL, Langston AL, Cheng H (1992) Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. Vision Res 32: 789–796

    Article  PubMed  CAS  Google Scholar 

  5. Chollet F, DiPiero V, Wise RJS, Brook DJ, Dolan RJ, Frackowiak RSJ (1991) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29: 63–71

    Article  PubMed  CAS  Google Scholar 

  6. Cohen LG, Brasil-Neto JP, Pascual-Leone A, Hallett M (1993) Plasticity of cortical motor output organization following deafferentation, cerebral lesions, and skill acquisition. Adv Neurol 63: 187–200

    PubMed  CAS  Google Scholar 

  7. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247: 470–473

    Article  PubMed  CAS  Google Scholar 

  8. Coyle P (1982) Middle cerebral artery occlusion in the young rat. Stroke 13: 855–859

    Article  PubMed  CAS  Google Scholar 

  9. De Ryck M, Van Reempts J, Borgers M, Wauquier A, Janssen AJ (1989) Photochemical stroke model: flunarizine prevents sensorimotor deficits after neocortical infarcts in rats. Stroke 20: 1383–1389

    Article  PubMed  Google Scholar 

  10. Ernst E (1990) A review of stroke rehabilitation and physiotherapy. Stroke 21: 1081–1085

    Article  PubMed  CAS  Google Scholar 

  11. Feeney DM, Gonzalez A, Law WA (1982) Amphetamine, haloperidole and experience interact to affect the rate of recovery after motor cortex injuries. Science 217: 855–857

    Article  PubMed  CAS  Google Scholar 

  12. Feeney DM (1991) Pharmacologic modulation of recovery after brain injury: a reconsideration of diaschisis. J Neurol Rehab 5: 113–128

    Google Scholar 

  13. Fries W, Danek A, Scheidtmann K, Hamburger C (1993) Motor recovery following capsular stroke. Brain 116: 369–382

    Article  PubMed  Google Scholar 

  14. Gage FH, Olejniczak P, Armstrong DM (1988) Astrocytes are important for sprouting in the septohippocampal circuit. Exp Neurol 102: 2–13

    Article  PubMed  CAS  Google Scholar 

  15. Goldstein LB (1991) Pharmacologic modulation of recovery after stroke: clinical data. J Neurol Rehab 5: 129–140

    Google Scholar 

  16. Goldstein LB, Davis JN (1990) Post-lesion practice and amphetamine-facilitated recovery of beam-walking in the rat. Restor Neurol Neurosci 1: 311–314

    PubMed  CAS  Google Scholar 

  17. Grabowski M, Brundin P, Johansson BB (1993) Paw-reaching, sensorimotor, and rotational behavior after brain infarction in rats. Stroke 24: 889–895

    Article  PubMed  CAS  Google Scholar 

  18. Grabowski M, Brundin P, Johansson BB (1993) Functional integration of cortical grafts placed in brain infarcts of rats. Ann Neurol 34: 362–368

    Article  PubMed  CAS  Google Scholar 

  19. Grabowski M, Sorensen J C, Mattson B, Zimmer J, Johansson BB (1995) Influence of an enriched environment and cortical grafting on functional outcome in brain infarcts of adult rats. Exp Neurol 133: 1–7

    Article  Google Scholar 

  20. Jenkins WM, Merzenich MM (1987) Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Prog Brain Res 71: 249–266

    Article  PubMed  CAS  Google Scholar 

  21. Jenkins WM, Merzenich MM, Ochs MT, Allard T, Guíc-Robles E (1990) Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol 63: 82–104

    PubMed  CAS  Google Scholar 

  22. Jenkins WM, Merzenich MM, Recanzone G (1990) Neocortical representational dynamics in adult primates: implications for neuropsychology. Neuropsychologia 28: 573–584

    Article  PubMed  CAS  Google Scholar 

  23. Johansson BB (1993) Has sensory stimulation a role in stroke rehabilitation ? Scand J Rehab Med 29: 87–96

    CAS  Google Scholar 

  24. Johansson BB, Grabowski M (1994) Functional recovery after brain infarction: Plasticity and neural transplantation. Brain Pathol 4: 85–95

    Article  PubMed  CAS  Google Scholar 

  25. Johansson BB (1995) Functional recovery after brain infarction. A review of animal data. Cerebrovasc Dis 5: 278–281

    Article  Google Scholar 

  26. Jones TA, Schallert T (1992) Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res 581: 156–160

    Article  PubMed  CAS  Google Scholar 

  27. Jones TA, Schauert T (1994) Use-dependent growth of pyramidal neurons after neocortical damage. J Neurosci 14: 2140–2152

    PubMed  CAS  Google Scholar 

  28. Kelche C, Dalrymple-Alford JC, Will B (1988) Housing conditions modulate the effects of intracerebral grafts in rats with brain lesions. Behav Brain Res 28: 287–295

    Article  PubMed  CAS  Google Scholar 

  29. Kolb B (1992) Mechanisms underlying recovery from cortical injury: reflections on progress and directions for the future. In: Rose FD, Johnson DA (eds) Recovery from brain damage. Plenum, New York, pp 169–186

    Chapter  Google Scholar 

  30. Kolb B, Gibb R (1991) Environmental enrichment and cortical injury: behavioral and anatomical consequences of frontal cortex lesions. Cereb Cortex 1: 189–198

    Article  PubMed  CAS  Google Scholar 

  31. Kotila M, Waltimo O, Niemi M-J, Laaksonen R, Lempinen M (1984) The profile of recovery from stroke and factors influencing outcome. Stroke 15: 1039–1044

    Article  PubMed  CAS  Google Scholar 

  32. Marrero H, Astion ML, Coles JA, Orkand RK (1989) Facilitation of voltage-gated ion channels in frog neuroglia by nerve impulses. Nature 339: 378–380

    Article  PubMed  CAS  Google Scholar 

  33. Merzenich MM, Recanzone G, Jenkins WM, Allard TT, Nudo RJ (1988) Cortical representational plasticity. In: Rakic P, Singer W (eds) Neurobiology of neocortex. Wiley, Berlin, pp 42–67

    Google Scholar 

  34. Mohammed AK, Winblad B, Ebendal T, Lärkfors L (1990) Environmental influence on behaviour and nerve growth factor in the brain. Brain Res 528: 62–72

    Article  PubMed  CAS  Google Scholar 

  35. Ohlsson A-L, Johansson BB (1995) The environment influences functional outcome of cerebral infarction in rats. Stroke 26: 644–649

    Article  PubMed  CAS  Google Scholar 

  36. Ottenbacher KJ, Jannell S (1993) The results of clinical trials in stroke rehabilitation research. Arch Neurol 50: 37–44

    Article  PubMed  CAS  Google Scholar 

  37. Pascual-Leone A, Grafman J, Hallett M (1994) Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263: 1287–1289

    Article  PubMed  CAS  Google Scholar 

  38. Pascual-Leone A, Torres F (1993) Plasticity of the sensorimotor cortex representation of the readingfiger in Braille readers. Brain 116: 39–52

    Article  PubMed  Google Scholar 

  39. Pons TP, Garraghty PE, Mishkin M (1988) Lesion-induced plasticity in the second somatosensory cortex of adult macaques. Proc Natl Acad Sci USA 85: 5279–5281

    Article  PubMed  CAS  Google Scholar 

  40. Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13: 87–103

    PubMed  CAS  Google Scholar 

  41. Rose FD (1988) Environmental enrichment and recovery of function following brain damage in the rat. Med Sci Res 16: 257–263

    Google Scholar 

  42. Rose FD, Johnson DA (1992) Recovery from brain damage. Adv Exp Med Biol 325: 187–198

    Article  PubMed  CAS  Google Scholar 

  43. Rosenzweig MR (1984) Experience, memory, and the brain. Am Psychol 39: 365–376

    Article  PubMed  CAS  Google Scholar 

  44. Skilbeck CE, Wade DT, Langton Hewer R, Wood VA (1983) Recovery after stroke. J Neurol Neurosurg Psychiatry 14: 5–8

    Article  Google Scholar 

  45. Schallert T, Hernandez TD, Barth TM (1986) Recovery of function after brain damage: severe and chronic disruption by diazepam. Brain Res 379: 104–111

    Article  PubMed  CAS  Google Scholar 

  46. Schallert T, Jones T, Weaver M, Shapior L, Crippens D, Fulton R (1992) Pharmacologic and anatomic considerations in recovery of function. In: Hanson S, Tucker DM (eds) Neuro-psychological assessment–physical medicine and rehabilitation: state of the art reviews 6: 375–393

    Google Scholar 

  47. Sanes JN, Wang J, Donoghue JP (1992) Immediate and delayed changes of rat motor cortical output representation with new forelimb configurations. Cereb Cortex 2: 141–152

    Article  PubMed  CAS  Google Scholar 

  48. Sirevaag AM, Greenough WT (1991) Plasticity of GFAP-immunoreactive astrocyte size and number in visual cortex of rats reared in complex environments. Brain Res 540: 273–278

    Article  PubMed  CAS  Google Scholar 

  49. Sutton RL, Feeney DM (1992) Noradrenergic agonists and antagonists affect recovery and maintenance of beam-walking ability after senorimotor cortex ablation in the rat. Rest Neurol Neurosci 4: 1–11

    CAS  Google Scholar 

  50. Usowicz MM, Gallo V, Cull-Candy SG (1989) Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids. Nature 339: 380–383

    Article  PubMed  CAS  Google Scholar 

  51. Wagennar RC, Meijer OG (1991) Effects of stroke rehabilitation (I). A critical review of the literature. J Rehab Sciences 4: 61–73

    Google Scholar 

  52. Walsh R (1981) Sensory environments, brain damage, and drugs: a review of interactions and mediating mechanisms. Int J Neurosci 14: 129–137

    Article  PubMed  CAS  Google Scholar 

  53. Weiller C, Chollet F, Friston KJ, Wise RJS, Frackowiak RSJ (1992) Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 31: 463–472

    Article  PubMed  CAS  Google Scholar 

  54. Will B, Kelche C (1992) Environmental approaches to recovery of function from brain damage: a review of animal studies (1981–1991). Adv Exp Med Biol 325: 79–103

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this paper

Cite this paper

Johansson, B. (1996). Environmental Influence on Outcome After Experimental Brain Infarction. In: Baethmann, A., Kempski, O.S., Plesnila, N., Staub, F. (eds) Mechanisms of Secondary Brain Damage in Cerebral Ischemia and Trauma. Acta Neurochirurgica, vol 66. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9465-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9465-2_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9467-6

  • Online ISBN: 978-3-7091-9465-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics