Advertisement

A Fundamental Problem of Mathematical Logic

  • Jan Krajíček
Conference paper
Part of the Collegium Logicum book series (COLLLOGICUM, volume 2)

Abstract

A fundamental open problem of mathematical logic and simultaneously the main problem of computational complexity theory is the following one.

Keywords

Boolean Function Proof System Propositional Formula Peano Arithmetic Polynomial Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajtai, M. (1983) El–formulae on finite structures, Annals of Pure and Applied Logic, 24: 1–48.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ajtai, M. (1988) The complexity of the pigeonhole principle, in: Proc. IEEE 29th Annual Symp. on Foundation of Computer Science, pp. 346–355.Google Scholar
  3. 3.
    Ajtai, M. (1990) Parity and the pigeonhole principle, in: Feasible Mathematics, eds. Ajtai, M, pp. 1–24. Birkhauser.CrossRefGoogle Scholar
  4. 4.
    Ajtai, M. (1994) The independence of the modulo p counting principles, in: Proceed-ings of the 26th Annual ACM Symposium on Theory of Computing, pp.402–411. ACM Press.Google Scholar
  5. 5.
    Alon, N., and Boppana, R. (1987) The monotone circuit complexity of boolean functions, Combinatorica, 7(1): 1–22.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Andreev, A. E. (1985) On a method for obtaining lower bounds for the complexity of individual monotone functions (in Russian), Doklady AN SSSR,282(5): 1033–1037.Google Scholar
  7. 7.
    Beame, P., Impagliazzo, R., Krajícek, J., Pitassi, T., and Pudlâk, P. (1994) Lower bounds on Hilbert’s Nullstellensatz and propositional proofs, submitted.Google Scholar
  8. 8.
    Beame, P., and Pitassi, T. (1993) Exponential separation between the matching principles and the pigeonhole principle, preprint.Google Scholar
  9. 9.
    Boppana, R., and Sipser, M. (1990) Complexity. of finite functions. in:Handbook of Theoretical Computer Science, ed. J. van Leeuwen, pp.758–804.Google Scholar
  10. 10.
    Buss, S. R. (1986) Bounded Arithmetic. Naples, Bibliopolis. (Revision of 1985 Princeton University Ph.D. thesis.)Google Scholar
  11. 11.
    Buss, S. R. (1987) The propositional pigeonhole principle has polynomial size Frege proofs, J. Symbolic Logic, 52: 916–927.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Buss, S. R. (1993) Relating the bounded arithmetic and polynomial time hierarchies, manuscript.Google Scholar
  13. 13.
    Clote, P., and Krajícek, J. (1993) Open problems, in: Arithmetic, Proof Theory and Computational Complexity, eds.P. Clote and J. Krajícek, pp.1–19, Oxford Press.Google Scholar
  14. 14.
    Cobham, A. (1965) The intrinsic computational difficulty of functions, in: Proc. Logic, Methodology and Philosophy of Science, ed. Cobham, A, p. 24–30, North-Holland.Google Scholar
  15. 15.
    Cook, S. A. (1971) The complexity of theorem proving procedures, in: Proc. 3rd Annual ACM Symp. on Theory of Computing, pp. 151–158. ACM Press.CrossRefGoogle Scholar
  16. 16.
    Cook, S. A. (1975) Feasibly constructive proofs and the propositional calculus, in: Proc. 7th Annual ACM Symp. on Theory of Computing,pp. 83–97. ACM Press.Google Scholar
  17. 17.
    Cook, S. A., and Reckhow, A. R. (1979) The relative efficiency of propositional proof systems, J. Symbolic Logic, 44(1): 36–50.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Furst, M., Saxe, J. B., and Sipser, M. (1984) Parity, circuits and the polynomial-time hierarchy, Math. Systems Theory, 17: 13–27.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Garey, M.R., and Johnson, D. S. (1979) Computers and intractability. New York, W.H. Freeman and Co..MATHGoogle Scholar
  20. 20.
    Haken, A. (1985) The intractability of resolution, Theoretical Computer Science, 39: 297–308.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Hastad, J. (1989) Almost optimal lower bounds for small depth circuits. in: Randomness and Computation, ed. S. Micah, Ser. Adv. Comp. Res. 5: 143–170. JAI Press.Google Scholar
  22. 22.
    Krajícek, J. (1989) Speed-up for propositional Frege systems via generalizations of proofs, Commentationes Mathematicae Universitas Carolinae, 30(1): 137–140.MATHGoogle Scholar
  23. 23.
    Krajícek, J. (1993) Fragments of bounded arithmetic and bounded query classes, Trans-actions of the A.M.S.,338(2): 587–598.MATHCrossRefGoogle Scholar
  24. 24.
    Krajícek, J. (1994) Lower bounds to the size of constant-depth propositional proofs, Journal of Symbolic Logic,59(1), pp.73–86.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Krajícek, J. (1995) On Frege and Extended Frege proof systems, in: Feasible Mathemat-ics II,eds. P. Clote and J. Remmel, Birkhauser, pp.284–319.Google Scholar
  26. 26.
    Krajícek, J. (1994) Bounded arithmetic, propositional logic and complexity theory,Cam- bridge University Press, in print.Google Scholar
  27. 27.
    Krajícek, J. (1995) Interpolation theorems, lower bounds for proof systems and inde- pendence results for bounded arithmetic, preprint.Google Scholar
  28. 28.
    Krajíeek, J., and Pudlâk, P. (1989) Propositional proof systems, the consistency of first order theories and the complexity of computations, J. Symbolic Logic, 54 (3): 1063–1079MathSciNetCrossRefGoogle Scholar
  29. 29.
    Krajíeek, J., and Pudlâk, P. (1990) Quantified propositional calculi and fragments of bounded arith- metic, Zeitschrift f. Mathematikal Logik u. Grundlagen d. Mathematik, 36: 29–46.CrossRefGoogle Scholar
  30. 30.
    Krajíeek, J., and Pudlâk, P. (1990) Propositional provability in models of weak arithmetic, in: Computer Science Logic (Kaiserlautern Oct. ‘89), eds. E. Boerger, H. Kleine-Bunning and M.M. Richter, LNCS 440, pp.193–210. Springer-Verlag.Google Scholar
  31. 31.
    Krajíeek, J., and Pudlâk, P. (1995) Some consequences of cryptographical conjectures for S2 and EF, submitted.Google Scholar
  32. 32.
    Krajícek, J, Pudlâk, P, and Takeuti, G. (1991) Bounded arithmetic and the polynomial hierarchy, Annals of Pure and Applied Logic, 52: 143–153.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Krajícek, J.,Pudlâk, P. and Woods, A. (1991) Exponential lower bound to the size of bounded depth Frege proofs of the pigeonhole principle, submitted.Google Scholar
  34. 34.
    Krajícek, J., and Takeuti, G. (1990) On bounded E;-polynomial induction, in: Feasible Mathematics, eds. Krajícek, J., and Takeuti, G, pp. 259–280. Birkhauser.CrossRefGoogle Scholar
  35. 35.
    Krajícek, J., and Takeuti, G. (1992) On induction-free provability, Annals of Mathematics and Artificial Intelligence, 6: 107–126.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Matijasevic, Y. (1970) Enumerable sets are Diophantine, Doklady AN SSSR, 191, pp. 279–282.MathSciNetGoogle Scholar
  37. 37.
    Meyer, A., and Stockmeyer, L. (1973) The equivalence problem for regular expressions with squaring requires exponential time, in: Proc. IEEE 13th Symp. on Switching and Automata Theory, pp. 125–129.Google Scholar
  38. 38.
    Parikh, R. (1971) Existence and feasibility in arithmetic, Journal of Symbolic Logic, 36, pp. 494–508.MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Paris, J., and Wilkie, A. J. (1981) Sets and induction, in: Proc. of the Jadwisin Logic Conf., Poland, pp.237–248. Leeds University Press.Google Scholar
  40. 40.
    Paris, J., and Wilkie, A. J. (1985) Counting problems in bounded arithmetic, in: Methods in Mathe-matical Logic, LNM 1130, pp.317–340. Springer.CrossRefGoogle Scholar
  41. 41.
    Paris, J., and Wilkie, A. J. (1987) On the scheme of induction for bounded arithmetic formulas, Annals of Pure and Applied Logic, 35, pp. 261–302.MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Pheidas, T. (1991) Hilbert’s tenth problem for fields of rational functions over finite fields, Inventiones Mathematicae, 103, pp. 1–8.MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Pheidas, T. (1994) Extensions of Hilbert’s tenth problem, Journal of Symbolic Logic, 59 (2), pp. 372–397.MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Pitassi, T., Beame, P., and Impagliazzo, R. (1993) Exponential lower bounds for the pigeonhole principle, Computational Complexity, 3, pp. 97–308.MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Razborov, A. A. (1985) Lower bounds on the monotone complexity of some Boolean functions, Soviet Mathem. Doklady, 31, pp. 354–357.MATHGoogle Scholar
  46. 46.
    Razborov, A. A. (1987) Lower bounds on the size of bounded depth networks over a complete basis with logical addition, Matem. Zametki, 41 (4): 598–607.MathSciNetGoogle Scholar
  47. 47.
    Razborov, A. A. (1994) Bounded arithmetic and lower bounds in Boolean complexity, in: Feasible Mathematics II, eds. P. Clote and J. Remmel, Birkhauser, pp. 344–386.Google Scholar
  48. 48.
    Razborov, A. A. (1994) Unprovability of lower bounds on the circuit size in certain fragments of bounded arithmetic, Izvestiya of the R.A.N., to appear.Google Scholar
  49. 49.
    Razborov, A. A. (1994) On provably disjoint NP-pairs, preprint.Google Scholar
  50. 50.
    Riffs, S. (1993) Independence in bounded arithmetic, PhD. Thesis, Oxford University.Google Scholar
  51. 51.
    Riffs, S. (1994) Count(q) does not imply Count(p),preprint.Google Scholar
  52. 52.
    Shafarevich,I. R. (1974) Basic algebraic geometry. Springer.Google Scholar
  53. 53.
    Smale, S. (1992) Theory of computation, in: Mathematical Research Today and Tomorrow, eds. Smale, S, pp. 59–69. Springer.CrossRefGoogle Scholar
  54. 54.
    Smolensky, R (1987) Algebraic methods in the theory of lower bounds for Boolean circuit complexity, in: Proc. 19th Ann. ACM Symp. on Theory of Computing, pp. 77–82.Google Scholar
  55. 55.
    Yao, Y. (1985) Separating the polynomial-time hierarchy by oracles, in: Proc. 26th Ann. IEEE Symp. on Found. of Comp. Sci., pp. 1–10.Google Scholar
  56. 56.
    Zambella, D. (1994) Notes on polynomially bounded arithmetic, preprint.Google Scholar

Copyright information

© Springer-Verlag/Wien 1996

Authors and Affiliations

  • Jan Krajíček
    • 1
  1. 1.Mathematical Institute of the Academy of SciencesPraha 1Czech Republic

Personalised recommendations