Skip to main content

A Tableau Calculus for Partial Functions

  • Conference paper
Collegium Logicum

Part of the book series: Collegium Logicum ((COLLLOGICUM,volume 2))

Abstract

Even though it is not very often admitted, partial functions do play a significant role in many practical applications of deduction systems. Kleene has already given a semantic account of partial functions using a three-valued logic decades ago, but there has not been a satisfactory mechanization. Recent years have seen a thorough investigation of the framework of many-valued truth-functional logics. However, strong Kleene logic, where quantification is restricted and therefore not truth-functional, does not fit the framework directly. We solve this problem by applying recent methods from sorted logics. This paper presents a tableau calculus that combines the proper treatment of partial functions with the efficiency of sorted calculi.

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 314, D2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth through Proof. Academic Press, 1986.

    Google Scholar 

  2. Michael J. Beeson. Foundations of Constructive Mathematics. Springer Ver-lag, 1985.

    Google Scholar 

  3. E. W. Beth. Semantic entailment and formal derivability. Medelingen von de Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Letterkunde, 18 (13): 309–342, 1955.

    MathSciNet  Google Scholar 

  4. Matthias Baaz and Christian G. Fermüller. Resolution for many-valued logics. In A. Voronkov, editor, Proceedings of LPAR, pages 107–118, St. Petersburg, Russia, 1992. Springer Verlag, LNAI 624.

    Google Scholar 

  5. Matthias Baaz, Christian G. Fermüller, and Richard Zach. Dual systems of sequents and tableaux for many-valued logics. Technical Report TUWE185.2BFZ.2–92, Technische Universität Wien, 1993.

    Google Scholar 

  6. Walter A. Carnielli. Systematization of finite many-valued logics through the method of tableaux. The Journal of Symbolic Logic, 52: 473–493, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  7. Walter A. Carnielli. On sequents and tableaux for many-valued logics. Jour-nal of Non-Classical Logic, 8 (1): 59–76, 1991.

    MATH  Google Scholar 

  8. William M. Farmer. A partial functions version of Church’s simple theory of types. The Journal of Symbolic Logic, 55 (3): 1269–1291, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  9. William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An Interactive Mathematical Proof System. Journal of Automated Reasoning, 11 (2): 213–248, October 1993.

    Article  MATH  Google Scholar 

  10. Melvin Fitting. First-Order Logic and Automated Theorem Proving. Sprin-ger Verlag, 1990.

    Google Scholar 

  11. Reiner Hähnle. Automated Theorem Proving in Multiple Valued Logics. PhD thesis, Fachbereich Informatik, Universität Karlsruhe, Karlsruhe, Germany, March 1992. revised version: Automated Deduction in Multiple-Valued Logics, Oxford University Press, 1994.

    Google Scholar 

  12. K. J. J. Hintikka. Form and content in quantification theory. Acta Philo-sophica Fennica, 8: 7–55, 1955.

    MathSciNet  Google Scholar 

  13. Reiner Hähnle and Peter H. Schmitt The liberalized 6-rule in free variable tableaux. Journal of Automated Reasoning, 12 (2): 211–222, 1994.

    Article  Google Scholar 

  14. Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleene logic for partial functions. SEKI Report SR-93–20, Fachbereich Informatik, Universität des Saarlandes, Im Stadtwald, Saarbrücken, Germany, 1993.

    Google Scholar 

  15. Manfred Kerber and Michael Kohlhase. A mechanization of strong Kleene logic for partial functions. In Alan Bundy, editor, Proceedings of the 12th CADE, pages 371–385, Nancy, France, 1994. Springer Verlag, LNAI 814.

    Google Scholar 

  16. Stephen C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.

    Google Scholar 

  17. Francisca Lucio-Carrrasco and Antonio Gavilanes-Franco. A first order logic for partial functions. In Proceedings STACS’89, pages 47–58. Springer Verlag, LNCS 349, 1989.

    Google Scholar 

  18. Dag Prawitz. An improved proof procedure. Theoria, 26: 102–139, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Reeves. Semantic tableaux as a framework for automated theorem-proving. In J. Hallam and C. Mellish, editors, Advances in Artificial Intelligence, AISB-87, pages 125–139. Wiley, 1987.

    Google Scholar 

  20. R. Schock. Logics without Existence Assumptions. Almquist & Wisell, 1968.

    Google Scholar 

  21. Dana S. Scott. Outline of a mathematical theory of computation. Technical Monograph PRG-2, Oxford University Computing Laboratory, 1970.

    Google Scholar 

  22. Raymond M. Smullyan. A unifying principle for quantification theory. Proc. Nat. Acad Sciences, 49: 828–832, 1963.

    Article  Google Scholar 

  23. Raymond M. Smullyan. First-Order Logic. Springer Verlag, 1968.

    Google Scholar 

  24. Manfred Schmidt-Schauß. Computational Aspects of an Order-Sorted Logic with Term Declarations,Springer Verlag, LNAI 395, 1989.

    Google Scholar 

  25. Pawel Tichy. Foundations of partial type theory. Reports on Mathematical Logic, 14: 59–72, 1982.

    MathSciNet  MATH  Google Scholar 

  26. Christoph Weidenbach. A resolution calculus with dynamic sort structures and partial functions. SEKI Report SR-89–23, Fachbereich Informatik, Universität Kaiserslautern, Kaiserslautern, Germany, 1989. Short version in ECAI’90, p. 688–693.

    Google Scholar 

  27. Christoph Weidenbach. A sorted logic using dynamic sorts. Technical Report MPI-I-91–218, Max-Planck-Institut für Informatik, Im Stadtwald, Saarbrücken, Germany, 1991. Short version in IJCAI’93, p. 60–65.

    Google Scholar 

  28. Christoph Weidenbach. First-order tableaux with sorts. In Krysia Broda and Marcello D’Agostino et al., editors, TABLEAUX-’94, 3rd Workshop on Theorem Proving with Analytic Tableaux and Related Methods, pages 247–261. Imperial College of Science Technology and Medicine, TR-94/5, April 1994. To appear in the Bulletin of the IGPL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag/Wien

About this paper

Cite this paper

Kerber, M., Kohlhase, M. (1996). A Tableau Calculus for Partial Functions. In: Collegium Logicum. Collegium Logicum, vol 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9461-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9461-4_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82796-3

  • Online ISBN: 978-3-7091-9461-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics