Advertisement

Electron Scattering from the Deuteron Using the Gross Equation

  • J. W. Van Orden
  • N. Devine
  • F. Gross
Part of the Few-Body Systems book series (FEWBODY, volume 9)

Abstract

The elastic electromagnetic form factors for the deuteron are calculated in the context of a one-boson-exchange model using the Gross or Spectator equation [1]. The formalism is manifestly covariant and gauge invariant. Results are shown for the impulse approximation and for ρπγ exchange currents. The impulse approximation results are quite close to the available data which suggests that only a relatively small exchange current contribution is required. It is shown that by using a soft form factor for the exchange current, the model provides a very good representation of the data.

Keywords

Form Factor Exchange Current Vertex Function Electromagnetic Form Factor Impulse Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Gross: Phys. Rev. 186, 1448 (1969);ADSCrossRefGoogle Scholar
  2. F. Gross: Phys. Rev. D 10, 223 (1974);Google Scholar
  3. F. Gross: Phys. Rev. C 26, 2203 (1982)ADSCrossRefGoogle Scholar
  4. 2.
    For an introduction to quasipotential equations see: G.E. Brown and A.D. Jackson: The Nucleon—Nucleon Interaction, Amsterdam: North—Holland 1976Google Scholar
  5. 3.
    J.W. Van Orden: Czech. J. Phys. 45, 181 (1995)ADSCrossRefGoogle Scholar
  6. 4.
    W.W. Buck and F. Gross: Phys. Rev. D 20, 2361 (1979)ADSCrossRefGoogle Scholar
  7. 5.
    F. Gross, J.W. Van Orden and K. Holinde: Phys. Rev. C 41, R1909 (1990);ADSCrossRefGoogle Scholar
  8. F. Gross, J.W. Van Orden and K. Holinde: Phys. Rev. C 45, 2094 (1992)ADSCrossRefGoogle Scholar
  9. 6.
    R.A. Arndt and L.D. Roper: Scattering Analysis and Interactive Dial-in (SAID) program, Virginia Polytechnic Institute and State UniversityGoogle Scholar
  10. 7.
    F. Gross and D.O. Riska: Phys. Rev. C 36, 1928 (1987)ADSCrossRefGoogle Scholar
  11. 8.
    J.C. Ward, Phys. Rev. 78, 182 (1950);ADSMATHCrossRefGoogle Scholar
  12. Y. Takahashi, Nuovo Cimento 6, 371 (1957)MATHCrossRefGoogle Scholar
  13. 9.
    F. Coester and D.O. Riska: Ann. Phys. (N.Y.) 234, 141 (1994)ADSCrossRefGoogle Scholar
  14. 10.
    R.E. Arnold, C.E. Carlson, and F. Gross: Phys. Rev. C 21, 1426 (1980)ADSCrossRefGoogle Scholar
  15. 11.
    V.G.J. Stoks et al.: Phys. Rev. C 48, 792 (1993)Google Scholar
  16. 12.
    E. Hummel and J.A. Tjon: Phys. Rev. Lett. 63, 1788 (1989);Phys. Rev. C 42, 423 (1990)ADSGoogle Scholar
  17. 13.
    G. Höhler et al.: Nucl. Phys. B114, 505 (1976)Google Scholar
  18. 14.
    S. Galster et al.: Nucl. Phys. B32, 221 (1971)ADSCrossRefGoogle Scholar
  19. 15.
    E. Nyman and D.O. Riska: Phys. Rev. Lett. 57, 3007 (1986);ADSCrossRefGoogle Scholar
  20. E. Nyman and D.O. Riska: Nucl. Phys. A468 473 (1987);CrossRefGoogle Scholar
  21. M. Wakamatsu and W. Weise, Nucl. Phys. A477, 559 (1988)CrossRefGoogle Scholar
  22. 16.
    H. Ito and F. Gross: Phys. Rev. Lett. 71, 2555 (1993)ADSCrossRefGoogle Scholar
  23. 17.
    K.L. Mitchell: Ph.D. Thesis, Kent State University (1995) (unpublished); K.L. Mitchell and P.C. Tandy, to be publishedGoogle Scholar
  24. 18.
    A. Stadler and F. Gross: Private CommunicationGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • J. W. Van Orden
    • 1
    • 3
  • N. Devine
    • 3
  • F. Gross
    • 2
    • 3
  1. 1.Department of PhysicsOld Dominion UniversityNorfolkUSA
  2. 2.Department of PhysicsCollege of William and MaryWilliamsburgUSA
  3. 3.The Continuous Electron Beam Accelerator FacilityNewport NewsUSA

Personalised recommendations