Results from the Real Photon Programme at MAMI

  • J. Ahrens
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 9)


The accelerator MAMI (Mainzer Mikrotron) with its excellent beam properties and its duty factor of 100% allows to apply coincidence techniques in intermediate energy nuclear physics, which has led to a variety of results with high precision. The real photon collaboration (A2) uses energy tagged bremsstrahlung photons with energies up to 800 MeV. We have results on total photon absorption (proton, deuteron, 3He and U), on Compton scattering (proton, 4He and 12C) and on meson production, especially on π°- and η-photoproduction. Double pion production on the proton and the deuteron was measured. The two and three body breakup of 3He was investigated as well as the reactions (γ,NN) and (γ, π ± N) on complex nuclei, etc. Some results are shown and discussed.


Compton Scattering Plastic Scintillator Duty Factor Real Photon Universal Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Herminghaus et al.: Nucl. Instr. Meth. A138, 1 (1976)CrossRefGoogle Scholar
  2. 2.
    I. Anthony et al.: Nucl. Instr. Meth. A301, 230 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    D. Lohmann, J. Peise et al.: Nucl. Instr. Meth. A343, 494 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    J. Ahrens et al.: In: Proc.Int. Workshop on Future Detectors for Photonu-clear Experiments, ed. D. Branford, Edinburgh 1991Google Scholar
  5. 5.
    G.P. Capitani et al.: INFN Report, INFN/BE 89/6Google Scholar
  6. 6.
    G. Audit et al.: Nucl. Instr. Meth. A301, 473 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    W. Wilke et al.: Nucl. Instr. Meth. A272, 785 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    I.J.D. MacGregor: In: Proc. Int. Workshop on Future Detectors for Photonuclear Experiments,ed. D. Branford, Edinburgh 1991; T. Hehl: ibidemGoogle Scholar
  9. 9.
    R. Novotny: IEEE Trans. Nucl. Sci., 38, 379 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    Th. Frommhold et al.: Phys. Lett. B295, 28 (1992)Google Scholar
  11. 11.
    M. MacCormick et al.: submitted to Phys. Rev. C Google Scholar
  12. 12.
    N. Bianchi et al.: Phys. Lett. B299, 219 (1993); Phys. Lett. B309, 5 (1993)Google Scholar
  13. 13.
    J. Ahrens: Nucl. Phys. A446, 229c (1985)ADSCrossRefGoogle Scholar
  14. 14.
    M. Sanzone: In: Proc. Perspectives in Nucl. Phys. at Intermediate Energies, ed. S. Boffi et al., p. 455, Trieste 1993;Google Scholar
  15. J. Peise et al.: to be published in Phys. Lett. B Google Scholar
  16. 15.
    F. Wissmann et al.: Phys. Lett. B335, 119 (1994)Google Scholar
  17. 16.
    A. L’vov, V.A. Petrun’kin, Lec. Notes in Phys. 365, 123 (1990)Google Scholar
  18. 17.
    B. Koerfgen, F. Osterfeld: Phys. Rev. C50, 1637 (1994)ADSGoogle Scholar
  19. 18.
    R.A. Arndt et al.: Phys. Rev. C42, 1853 (1990);ADSGoogle Scholar
  20. R.A. Arndt: Private CommunicationGoogle Scholar
  21. 19.
    B. Krusche et al.: Phys. Rev. Lett. 74, 3736 (1995);ADSCrossRefGoogle Scholar
  22. B. Krusche et al.: Z. Phys. A351, 237 (1995);ADSCrossRefGoogle Scholar
  23. B. Krusche et al.: submitted to Phys. Lett. B Google Scholar
  24. 20.
    A. Braghieri et al.: submitted to Phys. Lett. B;Google Scholar
  25. L.M. Murphy, J.M. Laget: submitted to Phys. Lett. B Google Scholar
  26. 21.
    S.B. Gerasimov: Sov. J. Nucl. Phys. 2, 430 (1966);Google Scholar
  27. S.D. Drell, A.C. Hearn: Phys. Rev. Lett. 16, 908 (1966);ADSCrossRefGoogle Scholar
  28. M. Anselmino et al.: Sov. J. Nucl. Phys. 49, 136 (1989);Google Scholar
  29. D. Drechsel: Prog. Part. Nucl. Phys. 34, 181 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • J. Ahrens
    • 1
  1. 1.Institut für KernphysikUniversität MainzMainzGermany

Personalised recommendations