Advertisement

Interaction, Cognition and Visualization

  • D. A. Duce
  • D. J. Duke
Part of the Eurographics book series (EUROGRAPH)

Abstract

The Shorter Oxford English Dictionary defines the word ‘visualize’ as:
  • to form a mental vision, image, picture of;

  • to construct a visual image in the mind.

and ‘visualization’ as:
  • the action, fact or power of visualizing: a picture formed by visualizing.

In the Oxford English Dictionary (1990) visualization is “... forming a mental picture of something not visible or present, or of an abstract thing ...”.

This paper gives the background to the recent upsurge of interest in scientific visualization and describes some of the work to develop a framework for understanding visualization. Some consideration is given to issues of truthfulness in visualization both in the relationship between the data set and the display and the mapping from display to cognition. The paper describes some recent work in rule-based vizualization and the automatic generation of graphical presentations, and concludes with a brief discussion on recent work that may provide a theoretical basis for understanding the effectiveness and veracity of such approaches.

Keywords

Logical Operator Visualization Technique Perceptual Operator Scientific Visualization Simulation Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Barnard and J. May. Interactions with advanced graphical interfaces and the deployment of latent human knowledge. In Eurographics Workshop on the Design, Specification and Verification of Interactive Systems. Springer-Verlag, 1995. In press.Google Scholar
  2. 2.
    D. Bergeron. Visualization reference models (panel session position statement). In G. M Nielson and D. Bergeron, editors, Proceedings of Visualization ‘83. IEEE Computer Science Press, 1993.Google Scholar
  3. 3.
    K. Brodlie, L. Brankin, G. Banecki, A. Gay, A. Poon, and H. Wright. GRASPARC — a problem solving environment integrating computation and visualization. In G. M Nielson and D. Bergeron, editors, Proceedings of Visualization ‘83. IEEE Computer Science Press, 1993.Google Scholar
  4. 4.
    K. W. Brodlie. Models for scientific visualization. In Animation and Scientific Visualisation. British Computer Society, State of the Art Report, 1992.Google Scholar
  5. 5.
    K. W. Brodlie. Introduction to advanced visualization. In Graphics and Visualization - Techniques and Tools. Course organized by the Advisory Group on Computer Graphics, University of Leeds, 1993.Google Scholar
  6. 6.
    F. P. Brooks, Jr. A vision for visualization (keynote address). In G. M Nielson and D. Bergeron, editors, Proceedings of Visualization ‘83. IEEE Computer Science Press, 1993.Google Scholar
  7. 7.
    D. M. Butler and M. H. Pendley. A visualisation model based on the mathematics of fibre bundles. Computers in Physics, 3:45–51, 1989.Google Scholar
  8. 8.
    S. M. Casner. A task-analytic approach to the automated design of graphic presentations. ACM Transactions on Graphics, 10(3):111–151, 1991.CrossRefGoogle Scholar
  9. 9.
    B. M. Coffins. Data visualisation - has it all been seen before? In Animation and Scientific Visualisation. British Computer Society, State of the Art Report, 1992.Google Scholar
  10. 10.
    D. J. Duke. Reasoning about gestural interaction. Computer Graphics Forum14(3), 1995.CrossRefGoogle Scholar
  11. 11.
    D. J. Duke and M. D. Harrison. Abstract interaction objects. Computer Graphics Forum, 12(3):025 - C36, 1993.CrossRefGoogle Scholar
  12. 12.
    D. J. Duke and M. D. Harrison. From formal models to formal methods. In Proc. Intl. Workshop on Software Engineering and Human-Computer Interaction. Lecture Notes in Computer Science, Volume 896, Springer-Verlag, 1995.Google Scholar
  13. 13.
    D.J. Duke, P.J. Barnard, D.A. Duce, and J. May. Systematic development of the human interface. In APSEC’95: Second Asia-Pacific Software Engineering Conference,1995. Submitted.Google Scholar
  14. 14.
    D. S. Dyer. A dataflow toolkit for visualization. IEEE Computer Graphics and Applications, 10(4):60–69, 1990.CrossRefGoogle Scholar
  15. 15.
    G. Edwards. Visualization - the second generation. Image Processing, 1992.Google Scholar
  16. 16.
    R. B. Haber, B. Lucas, and N. Coffins. A data model for scientific visualization with provisions for regular and irregular grids. In Proceedings of Visualization ‘81, pages 298–305. IEEE Computer Science Press, 1991.Google Scholar
  17. 17.
    R. B. Haber and D. McNabb. Visualization idioms: A conceptual model for scientific visualisation systems. In Nielson G. M. and B Schriever, editors, Visualisation in Scientific Computing. IEEE Comp. Soc. Press, 1990.Google Scholar
  18. 18.
    F. R. A. Hopgood. Pioneering images. In Graphics, Interaction and Visualization — The Challenge of the 1990’s. British Computer Society, State of the Art Report, 1992.Google Scholar
  19. 19.
    H. Levkowitz and G. T. Herman. Colour scales for image design. IEEE Computer Graphics and Applications,12(1):72–80, 1990.CrossRefGoogle Scholar
  20. 20.
    M. Livingstone. Art, illusion and the visual system. Scientific American, pages 68–75, January 1988.Google Scholar
  21. 21.
    M. Livingstone and D. Hubel. Segregation of form, color, movement, and depth: Anatomy, physiology and perception. Science, 240: 740–749, 1988.CrossRefGoogle Scholar
  22. 22.
    B. Lucas, G. D. Abram, N. S. Coffins, D. A. Epstein, D. L. Gresh, and K. P. McAuliffe. An architecture for a scientific visualization system. In A. E. Kaufman and G. M. Nielson, editors, Proceedings of Visualization ‘82. IEEE Computer Science Press, 1992.Google Scholar
  23. 23.
    J. May and P. J. Barnard. Cinematography and interface design. In Proceedings of INTERACT ‘85,1995.Google Scholar
  24. 24.
    J. May, S. Scott, and P. Barnard. Structuring displays a psychological guide. In UM/WP31. Amodeus project working paper, 1995.Google Scholar
  25. 25.
    B. H. McCormick, T. A. DeFanti, and M. D. Brown. Visualization in scientific computing. Computer Graphics, 21 (6), 1987.Google Scholar
  26. 26.
    J. Rasure, D. Argior, T. Sauer, and C. Williams. A visual language and software development environment for image processing. International Journal of Imaging Systems and Technology, 1991.Google Scholar
  27. 27.
    P. K. Robertson. A methodology for choosing data representations. IEEE Computer Graphics and Applications. 11(3):56–69, 1991.CrossRefGoogle Scholar
  28. 28.
    B. E. Rogowitz. The psychology of visualization (panel session position statement). In G. M Nielson and D. Bergeron, editors, Proceedings of Visualization ‘83. IEEE Computer Science Press, 1993.Google Scholar
  29. 29.
    B. E. Rogowitz, D. T. Ling, and W. A. Kellog. Task dependence, veridicality, and pre-attentive vision: Taking advantage of perceptually-rich computer environments. In SPIE Vol. 1666 Human Vision, Visual Processing and Digital Display III, 1992.Google Scholar
  30. 30.
    B. E. Rogowitz and L. A. Treinish. An architecture for rule-based visualization. In G. M Nielson and D. Bergeron, editors, Proceedings of Visualization ‘83. IEEE Computer Science Press, 1993.Google Scholar
  31. 31.
    B. E. Rogowitz and L. A. Treinish. Data structures and perceptual structures. In SPIE Vol. 1913 Human Vision, Visual Processing and Digital Display IV,1993.Google Scholar
  32. H. Senay and E. Ignatius. A knowledge-based system for visualization design. IEEE Computer Graphics and Applications,14(6):36 — 47, 1994.CrossRefGoogle Scholar
  33. 33.
    D. Silver. Object-oriented visualization. IEEE Computer Graphics and Applications,15(3):54 — 62, 1994.CrossRefGoogle Scholar
  34. 34.
    R. Springmeyer, M. M. Blattner, and N. L. Max. A characterization of the scientific data analysis process. In Proceedings of Visualization ‘82. IEEE Computer Science Press, 1992.Google Scholar
  35. 35.
    L. A. Treinish. Unifying principles of data management for scientific visualization. In Animation and Scientific Visualisation. British Computer Society, State of the Art Report, 1992.Google Scholar
  36. 36.
    E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire CT, 1983.Google Scholar
  37. 37.
    E. R. Tufte. Envisioning Information. Graphics Press, Cheshire CT, ISBN 0–81868979-X, 1990.Google Scholar
  38. 38.
    C. Upson. The application visualisation system: A computational environment for scientific visualisation. IEEE Computer Graphics and Applications, July 1989.Google Scholar
  39. 39.
    M. Veltman. Diagrammatica: The Path to Feynman Diagrams. Volume 4 of Cambridge Lecture Notes in Physics, Cambridge University Press, 1995.Google Scholar
  40. 40.
    H. Wright, S. V. Pennington, and G. A. Banecki. Reference model for problem solving in a visual environment. In Proceedings of Eurographics Workshop on Scientific Visualization, 1993.Google Scholar
  41. 41.
    H. Wright, G. A. Stead, and K. W. Brodlie. Interactive exploration of chemical reaction mechanisms using novel visualization and integration techniques. In M. Gobel, H. Muller, and B. Urban, editors, Proceedings of Visualization ‘83. Springer-Verlag, Wien, 1995.Google Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • D. A. Duce
    • 1
  • D. J. Duke
    • 2
  1. 1.Rutherford Appleton LaboratoryChilton, Didcot, OxonUK
  2. 2.University of YorkHeslington, YorkUK

Personalised recommendations