Two-dimensional simulation of gaseous phenomena using vortex particles

  • Manuel Noronha Gamito
  • Pedro Faria Lopes
  • Mário Rui Gomes
Part of the Eurographics book series (EUROGRAPH)


This article presents a simple, fast and stable method for the animation and visualisation of turbulent gaseous fluids in two dimensions. We draw on well known methods from computational fluid dynamics to model the fluid using vorticity and velocity fields. While the vorticity is transported by a particle system, we use a uniform grid to compute velocities and displacements for each particle. This mixed approach where free particles move on a fixed grid requires little computational power, making it suitable for computer animation. The method simulates the behaviour of fluids in situations where the contact between fluid masses with different velocities generates an intermediate mixing layer which can give rise to turbulence phenomena. Unlike previous algorithms, it is possible to generate quasiturbulent patterns, where large scale coherent vortex structures are still discernible in the flow.


Stream Function Vorticity Field Vortex Sheet Computer Animation Vortex Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abernathy, F.H., Kronauer, R.E., “The formation of vortex streets”, Journal of Fluid Mechanics, vol. 13, pp. 1–20, 1962.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Almgren, A.S., Buttke, T., Colella, P., “A Fast Adaptive Vortex Method in Three Dimensions”, Journal of Computational Physics, vol. 113, pp. 177–200, 1994.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Appel, A.A., “An Efficient Program for Many-Body Simulations”, SIAM Journal on Scientific and Statistical Computing, vol. 16, n. 1, pp. 85–103, 1985.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chiba, N., Muraoka, K., Takahashi, H., Miura, M., “Two-dimensional Visual Simulation of Flames, Smoke and the Spread of Fire”, The Journal of Visualisation And Computer Animation, vol. 5, pp. 37–53, 1994.CrossRefGoogle Scholar
  5. 5.
    Chorin, A.J., “Numerical Study of Slightly Viscous Flow”, Journal of Fluid Mechanics, vol. 57, n. 4, pp. 78. 5–796, 1973.MathSciNetGoogle Scholar
  6. 6.
    Christiansen, J.P., “Numerical Simulation by the Method of Point Vortices”, Journal of Computational Physics, vol. 13, pp. 363–379, 1973.MATHCrossRefGoogle Scholar
  7. 7.
    Ebert, D.S., Parent, R.E., “Rendering And Animation of Gaseous Phenomena by Combining Fast Volume and Scanline A-buffer Techniques”, ACM Computer Graphics, vol. 24, n. 4, pp. 357–366, (Proc. SIGGRAPH ’80).Google Scholar
  8. 8.
    Gardner, G.Y., “Visual Simulation of Clouds”, ACM Computer Graphics, vol. 19, n. 3, pp. 297–363, (Proc. SIGGRAPH ’85).Google Scholar
  9. 9.
    Greengard, L., Rokhlin, V., “A Fast Algorithm for Particle Simulations”, Journal of Computational Physics, vol. 73, pp. 325–348, 1987.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Haumann, D., Wejchert, J., Arya, K., Bacon, B., Khorasani, A., Norton, A., Sweeney, P., “Aspects of Motion Design for Physically-Based Animation”, Scientific Visualisation of Physical Phenomena, (CG International ’81 Proceedings), Springer-Verlag, Tokyo, June 1991, pp. 147–158.Google Scholar
  11. 11.
    Hockney, R.W., Eastwood, J.W., “Computer Simulation Using Particles”, IOP Publishing, Bristol, 1988.MATHCrossRefGoogle Scholar
  12. 12.
    Leonard, A., “Vortex Methods for Flow Simulation”, Journal of Computational Physics, vol. 37, pp. 289–335, 1980.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Perlin, K., “An Image Synthesiser”, ACM Computer Graphics, vol. 19, n. 3, pp. 287–296, (Proc. SIGGRAPH ’85).Google Scholar
  14. 14.
    Reeves, W.T., “Particle Systems- A Technique for Modelling a Class of Fuzzy Objects”, ACM Computer Graphics, vol. 17, n. 3, pp. 359–376, (Proc. SIGGRAPH ’83).Google Scholar
  15. 15.
    Sakas, G., “Modelling and animating turbulent gaseous phenomena using spectral synthesis”, The Visual Computer, vol. 9, n. 4, pp. 200–212, 1993.CrossRefGoogle Scholar
  16. 16.
    Saupe, D., Peitgen, H.O., “The Science of Fractal Images”, Springer-Verlag, Berlin Heidelberg New York, 1988.MATHGoogle Scholar
  17. 17.
    Sethian, J., “A Brief Overview of Vortex Methods”, Vortex Methods and Vortex Motion, Gustafson, K.E., Sethian, J., ( Eds. ), SIAM, 1990Google Scholar
  18. 18.
    Sethian, J., Brunet, J., Greenberg, A., Mesirov, J.P., “Two-Dimensional, Viscous, Incompressible Flow in Complex Geometries on a Massively Parallel Processor, Journal of Computational Physics, vol. 101, pp. 185–206, 1992MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Starr, J., Fiume, E., “Turbulent Wind Fields for Gaseous Phenomena”, ACM Computer Graphics, vol. 27, n. 4, pp. 369–376, (Proc. SIGGRAPH ’83).Google Scholar
  20. 20.
    Swarztrauber, P., Sweet, R., “Efficient Fortran SubPrograms For The Solution Of Elliptic Equations”, NCAR TN/IA-109, July, 1975, 138 pp.Google Scholar
  21. 21.
    Tennekes, H., Lumley, J., “A First Course in Turbulence”, MIT Press, Cambridge, 1972.Google Scholar
  22. 22.
    van Wijk, J.J., “Flow Visualisation with Surface Particles”, IEEE Computer Graphics & Applications, pp. 18–24, July, 1993.Google Scholar
  23. 23.
    Yaeger, L., Upson, C., Meyers, R., “Combining Physical and Visual Simulation: Creation of the Planet Jupiter for the Film 2010”, ACM Computer Graphics, vol. 20, n. 4, pp. 85–93, (Proc. SIGGRAPH ’86).Google Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • Manuel Noronha Gamito
    • 1
  • Pedro Faria Lopes
    • 1
  • Mário Rui Gomes
    • 1
  1. 1.INESCLisboaPortugal

Personalised recommendations